FACULDADES INTEGRADAS DE BAURU CURSO DE ENGENHARIA CIVIL

André Wilian Gusson Célio Ricardo Monteiro

AVALIAÇÃO DE MÉTODOS PARA DETERMINAÇÃO DE EQUAÇÕES PARCIAIS

DE CHUVA E CURVAS DE INTENSIDADE DURAÇÃO E FREQUÊNCIA – IDF

PARA O MUNICÍPIO DE BAURU/SP NO PERIODO DE 2003 A 2015

André Wilian Gusson Célio Ricardo Monteiro

AVALIAÇÃO DE MÉTODOS PARA DETERMINAÇÃO DE EQUAÇÕES PARCIAIS

DE CHUVA E CURVAS DE INTENSIDADE DURAÇÃO E FREQUÊNCIA – IDF

PARA O MUNICÍPIO DE BAURU/SP NO PERIODO DE 2003 A 2015

Trabalho de Conclusão de Curso apresentado às Faculdades Integradas de Bauru para obtenção do título de Bacharel em Engenharia Civil, sob a coordenação da disciplina de TCC.

Dados para a catalogação

Gusson, André Wilian

Avaliação de métodos para determinação de equações parciais de chuva e curvas de Intensidade Duração e Frequência - IDF para o município de Bauru/SP no período de 2003 a 2015 - André Wilian Gusson, Célio Ricardo Monteiro. Bauru, FIB, 2017. 86f.

Trabalho de Conclusão de Curso, Graduação em Engenharia Civil. Faculdades Integradas de Bauru

Coordenador: Luiz Vitor Crepaldi Sanches

1. Curva IDF. 2. Hidrologia. 3. Probabilidade. I. Avaliação de métodos para determinação de equações parciais de chuva e curvas de Intensidade Duração e Frequência - IDF para o município de Bauru/SP no período de 2003 a 2015. II. Faculdades Integradas de Bauru.

CDD 620

André Wilian Gusson Célio Ricardo Monteiro

AVALIAÇÃO DE MÉTODOS PARA DETERMINAÇÃO DE EQUAÇÕES PARCIAIS

DE CHUVA E CURVAS DE INTENSIDADE DURAÇÃO E FREQUÊNCIA – IDF

PARA O MUNICÍPIO DE BAURU/SP NO PERIODO DE 2003 A 2015

Trabalho de Conclusão de Curso apresentado às Faculdades Integradas de Bauru para obtenção do título de Bacharel em Engenharia Civil.

Bauru, 03 de Novembro de 2017.

Banca Examinadora:

Presidente/ Coordenador: Luiz Vitor Crepaldi Sanches

Professor 1: Glauce Alves Tonelli

Professor 2: Tatiene Martins Coelho

DEDICATÓRIA

Dedicamos este trabalho aos nossos pais e familiares, que direta ou indiretamente contribuíram para a finalização e obtenção dos resultados apresentados.

Dedicamos também aos amigos do convívio social e acadêmico que estiveram presentes durante todos esses anos de estudo e que nos fizeram melhorar enquanto agentes sociais e acadêmicos contribuindo positivamente para os resultados atingidos neste trabalho.

AGRADECIMENTOS

Agradeço em primeiro lugar a Deus, onde encontrei força e sabedoria para enfrentar as batalhas ao longo dos anos de graduação em engenharia civil. Ao professor Roberto Sarti Côrtes que muito auxiliou na elaboração do tema deste trabalho e nos passos iniciais da pesquisa. Ao nosso orientador professor Luiz Vitor Crepaldi Sanches pela compreensão, confiança, dedicação, amizade e pelos ensinamentos que levaremos conosco para toda a vida. A professora Ilza Machado Kaiser da Unesp/Bauru a qual temos muito a agradecer por ter nos dedicado seu tempo e confiança e nos explicado sobre os métodos de calculo e uso de planilhas aplicadas neste trabalho. Aos meus pais Dalila e José que muito me apoiaram durante os anos de estudo. Agradeço também a minha namorada e companheira Lara, a qual foi bastante paciente nas horas em que precisei me ausentar e não pude estar ao seu lado. Ao meu companheiro de TCC Celio Ricardo que nos pontos chaves do desmembramento deste trabalhou buscou e conseguiu as respostas que precisávamos.

André Wilian Gusson

Em primeiro lugar agradeço a Deus, por ter me proporcionado a oportunidade de estudar e me graduar em engenharia civil. Agradeço ao professor Roberto Sarti Côrtes que contribui para a escolha do tema deste trabalho. A professora Ilza Machado Kaiser da UNESP na cidade de Bauru, pelo seu empenho e atenção dada neste trabalho. Ao nosso orientador professor Luiz Vitor Crepaldi Sanches, pelo direcionamento, orientação e apoio. Aos meus pais Célio e Maria pelos ensinamentos, caráter e honestidade. A minha esposa Ana Paula que esteve ao meu lado sempre me apoiando nos meus estudos. Aos meus filhos Caio e Cauã, mesmo sendo crianças, sempre compreenderam o tempo que estive ausente. Ao meu companheiro neste trabalho André, pela paciência, no qual aprendi muito com sua inteligência, empenho e comprometimento.

Célio Ricardo Monteiro

"Há três métodos para ganhar sabedoria: primeiro, por reflexão, que é o mais nobre. Segundo, por imitação, que é o mais fácil. E terceiro, por experiência, que é o mais amargo".

GUSSON, André Wilian; MONTEIRO, Célio Ricardo. Avaliação de métodos para determinação de equações parciais de chuva e curvas de Intensidade Duração e Frequência – IDF para o município de Bauru/SP no período de 2003 a 2015. 2017. 86f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) - FIB. Bauru, 2017.

RESUMO

O conhecimento das relações entre intensidade, duração e frequência de chuvas intensas é de grande importância nos estudos hidrológicos, onde o método de Gumbel tem sido amplamente utilizado para geração de equações que relacionam a intensidade, duração e frequência. Essas relações podem ser expressas de forma gráfica ou por meio das equações de chuvas intensas obtidas por meio da análise de séries pluviográficas ou com uso de coeficientes para desagregar chuvas de 24 horas em períodos menores. Na maioria das literaturas existentes, as equações e curvas IDF são obtidas com a utilização dos coeficientes de desagregação elaborados pela CETESB e baseados nos estudos realizados em 98 localidades brasileiras por Pfafstetter em 1957. Para a realização deste trabalho foram utilizados dados compreendidos entre os anos de 2003 e 2015 oriundos da Estação Meteorológica Automática do Instituto de Pesquisas Meteorológicas da Universidade Estadual Paulista "Júlio de Mesquita Filho", campus de Bauru - SP. Os dados foram tratados com o software Microsoft Excel e posteriormente utilizados para o cálculo das intensidades máximas para os tempos de retorno de 2, 5, 10, 25, 50 e 100 anos utilizando separadamente os coeficientes de desagregação da CETESB e os dados históricos reais nas durações de 10, 20, 30, 60, 120, 180, 360, 720, 1.080 e 1.440 minutos. O estudo comprovou que as intensidades obtidas a partir das equações e curvas IDF geradas com dados diários e com os coeficientes de desagregação da CETESB na área de estudo subestimam os valores reais de intensidade, concluindo que há diferenças significativas nas intensidades das chuvas e gráficos IDF obtidos a partir dos coeficientes de desagregação da CETESB, e dependendo da duração e tempos de retorno considerados no projeto de sistemas de drenagem, estes poderão estar sendo subdimensionados.

Palavras-chave: Curva IDF. Hidrologia. Probabilidade.

GUSSON, André Wilian; MONTEIRO, Célio Ricardo. Evaluation of methods for determination of partial rain equations and intensity curves Duration and Frequency - IDF for the municipality of Bauru/SP from 2003 to 2015. 2017. 88f. Completion of course work (Undergraduate in Civil Engineering) - FIB. Bauru, 2017.

ABSTRACT

The knowledge of the relationships between intensity, duration and frequency of intense rains is of great importance in hydrological studies, where the Gumbel method has been widely used to generate equations that relate intensity, duration and frequency. These relationships can be expressed graphically or through the equations of intense rainfall obtained through the analysis of pluviographic series or using coefficients to disaggregate 24-hour rainfall in shorter periods. In most of the existing literature, the IDF equations and curves are obtained using the coefficients of disaggregation elaborated by CETESB and based on the studies carried out in 98 Brazilian locations by Pfafstetter in 1957. For the accomplishment of this work data were used between the years of 2003 and 2015 from the Automatic Meteorological Station of the Institute of Meteorological Research of the Paulista State University "Júlio de Mesquita Filho", campus of Bauru - SP. The data were treated with Microsoft Excel software and later used to calculate the maximum intensities for the return times of 2, 5, 10, 25, 50 and 100 years using CETESB disaggregation coefficients separately and the actual historical data in durations of 10, 20, 30, 60, 120, 180, 360, 720, 1.080 and 1.440 minutes. The study showed that the intensities obtained from the IDF equations and curves generated with daily data and with the CETESB breakdown coefficients in the study area underestimate the actual intensity values, concluding that there are significant differences in rainfall intensities and IDF graphs obtained and from the CETESB decomposition coefficients, and depending on the duration and time of return considered in drainage systems design, these may be being undersized.

Keywords: IDF curve. Hydrology. Probability.

LISTA DE ILUSTRAÇÕES

		Ρ.
Figura 1	- Estação Meteorológica de Bauru/SP (IPMET)	28
Figura 2	- Dados de precipitação mensal da estação meteorológica	30
Figura 3	- Processamento inicial dos dados fornecidos pelo IPMET	31
Figura 4	- Parte da planilha de agregação de dados de um mês	37

LISTA DE QUADROS

			Р.
Quadro 1	-	Relação de meses anuais e dados registrados	29
Quadro 2	-	Precipitação máxima do ano considerado	33
Quadro 3	-	Série de máximas precipitações anuais	34
Quadro 4	-	Série de máximas precipitações anuais de 2003	38
Quadro 5	-	Série de máximas precipitações anuais de 2004	39
Quadro 6	-	Série de máximas precipitações anuais de 2005	39
Quadro 7	-	Série de máximas precipitações anuais de 2006	40
Quadro 8	-	Série de máximas precipitações anuais de 2007	40
Quadro 9	-	Série de máximas precipitações anuais de 2008	41
Quadro 10	-	Série de máximas precipitações anuais de 2009	41
Quadro 11	-	Série de máximas precipitações anuais de 2010	42
Quadro 12	-	Série de máximas precipitações anuais de 2011	42
Quadro 13	-	Série de máximas precipitações anuais de 2012	43
Quadro 14	-	Série de máximas precipitações anuais de 2013	43
Quadro 15	-	Série de máximas precipitações anuais de 2014	44
Quadro 16	-	Série de máximas precipitações anuais de 2015	44
Quadro 17	-	Desagregação por tempo de retorno	46
Quadro 18	-	Máximas precipitações por duração de chuva	47
Quadro 19	-	Valores de b e K para cada tempo de retorno	49
Quadro 20	-	Precipitações por duração	49
Quadro 21	-	log t, log (t+b) e log i	52
Quadro 22	-	Tabela para determinação dos parâmetros b, c e n	54
Quadro 23	-	Equações IDF obtidas para a cidade de Bauru	54
Quadro 24	-	Chuvas desagregadas para TR 2 anos	56
Quadro 25	-	Chuvas desagregadas para TR 5 anos	57
Quadro 26	-	Chuvas desagregadas para TR 10 anos	58
Quadro 27	-	Chuvas desagregadas para TR 25 anos	59
Quadro 28	-	Chuvas desagregadas para TR 50 anos	60
Quadro 29	-	Chuvas desagregadas para TR 100 anos	61
Quadro 30	-	Chuvas sem desagregação para TR 2 anos	62
Quadro 31	_	Chuvas sem desagregação para TR 5 anos	63

Quadro 32	-	Chuvas sem desagregação para TR 10 anos	64
Quadro 33	-	Chuvas sem desagregação para TR 25 anos	65
Quadro 34	-	Chuvas sem desagregação para TR 50 anos	66
Quadro 35	-	Chuvas sem desagregação para TR 100 anos	67
Quadro 36	-	Intensidades para chuvas diárias desagregadas	69
Quadro 37	-	Intensidades para chuvas diárias sem desagregar	69
Quadro 38	-	Intensidades de chuva para duração de 10 minutos	73
Quadro 39	-	Intensidades de chuva para duração de 1.440 minutos	74

LISTA DE TABELAS

		Ρ.
Tabela 1	- Coeficientes de desagregação genéricos	26
Tabela 2	- Coeficientes de desagregação genéricos	29

LISTA DE GRÁFICOS

			Ρ.
Gráfico 1	-	Ajuste preliminar T2	51
Gráfico 2	-	Ajuste definitivo T2	53
Gráfico 3	-	Curva IDF para TR 2 anos por desagregação	56
Gráfico 4	-	Curva IDF para TR 5 anos por desagregação	57
Gráfico 5	-	Curva IDF para TR 10 anos por desagregação	58
Gráfico 6	-	Curva IDF para TR 25 anos por desagregação	59
Gráfico 7	-	Curva IDF para TR 50 anos por desagregação	60
Gráfico 8	-	Curva IDF para TR 100 anos por desagregação	61
Gráfico 9	-	Curva IDF para TR 2 anos sem desagregação	63
Gráfico 10	-	Curva IDF para TR 5 anos sem desagregação	64
Gráfico 11	-	Curva IDF para TR 10 anos sem desagregação	65
Gráfico 12	-	Curva IDF para TR 25 anos sem desagregação	66
Gráfico 13	-	Curva IDF para TR 50 anos sem desagregação	67
Gráfico 14	-	Curva IDF para TR 100 anos sem desagregação	68
Gráfico 15	-	Curvas IDF para os tempos de retorno por desagregação	71
Gráfico 16	-	Curvas IDF para os tempos de retorno sem desagregar	71
Gráfico 17	-	Curvas IDF com e sem desagregação	72
Gráfico 18	-	Curvas Intensidade e tempo de retorno de 10 minutos	73
Gráfico 19	-	Curvas Intensidade e tempo de retorno de 1.440 minutos	74
Gráfico 20	-	Detalhe de intensidade para duração de 1.440 minutos	75

LISTA DE SIGLAS E ABREVIATURAS

CETESB – Companhia Ambiental do Estado de São Paulo

DNIT – Departamento Nacional de Infraestrutura de Transportes

IBGE - Instituto Brasileiro de Geografia e Estatística

IDF - Intensidade, Duração e Frequência

IPMET - Instituto de Pesquisas Meteorológicas

SUMÁRIO

1	INTRODUÇÃO	16
1.1	Justificativa	18
1.2	Objetivo Geral	18
1.3	Objetivo específico	18
1.4	Estrutura do trabalho	19
2	REFERENCIAL TEÓRICO	20
2.1	Bacias hidrográficas	20
2.2	Precipitação	21
2.3	Mecanismos de formação e classificação das precipitações	22
2.4	Chuvas Intensas	23
2.5	Desagregação da Precipitação Diária	25
2.6	Distribuição de Gumbel e relações IDF	26
3	PROCEDIMENTOS METODOLÓGICOS	28
3.1	Universo de pesquisa	28
3.2	Coleta de dados	30
4	DESENVOLVIMENTO	31
4.1	Análise de dados	31
4.2	Séries de máximas anuais	33
4.3	Desagregações dos dados diários de precipitação	35
4.4	Agregações de dados pluviográficos	36
4.5	Máximos valores de precipitação agregada	38
4.6	Distribuição de Gumbel aos dados desagregados	45
4.7	Distribuição de Gumbel aos dados agregados	47
4.8	Ajustes dos parâmetros b, c e n para as equações IDF	50
4.9	Limitações da pesquisa	55

4.10	Descrição dos resultados	55
4.10.1	Intensidades e curvas IDF obtidos por desagregação	55
4.10.2	Intensidades e curvas IDF obtidos sem desagregação	62
4.10.3	Comparativos de resultados obtidos	68
5	DISCUSSÃO	76
6	CONSIDERAÇÕES FINAIS	78
7	CONCLUSÕES	79
REFERÊNCIAS		80

1 INTRODUÇÃO

No Brasil, dados computados entre os anos de 1982 a 2010 registraram que as enchentes urbanas foram responsáveis por mais de 60% do total de mortes decorrentes de desastres naturais e perdas patrimoniais (MONTEIRO; KOBIYAMA, 2013).

As áreas urbanas são os ambientes mais modificados pelo homem, onde a urbanização e modificações no estilo de vida afetam periodicamente o ciclo hidrológico (DIAS *et al.*, 2015).

Pode-se também apontar que a remoção da cobertura vegetal e impermeabilização do solo, aumentam o volume e velocidade de escoamento das águas pluviais e consequentemente o risco de enchentes (TUCCI; CLARKE, 1997).

Existem dois tipos de medidas preventivas, as quais podem ser classificadas como medidas não-estruturais e estruturais (BARBOSA, 2006).

As medidas não-estruturais envolvem ações de planejamento e gerenciamento, onde comumente estão presentes sistemas de alerta, zoneamento ambiental, plano diretor e políticas públicas, já as medidas estruturais envolvem obras de engenharia que necessitam de conhecimentos relacionados a topografia local e dados hidrológicos (GOERL; KOBIYAMA; PELLERIN, 2012).

Dispositivos e estruturas construtivas tais como como bueiros, galerias e pontes necessitam para seu dimensionamento de parâmetros hidrológicos confiáveis para garantir adequada confiabilidade e bom funcionamento do sistema.

Chuvas intensas são aquelas que podem causar enchentes e inundações devido a geração de escoamentos pluviais em galerias e canais com valores de vazões próximos ou superiores a capacidade do sistema de drenagem (PEREIRA; SILVEIRA; SILVINO, 2014).

O dimensionamento das estruturas de drenagem é feito em função de riscos de inundação e avaliados com base na ocupação e vida útil da obra, onde a intensidade da chuva de projeto é definida a partir do período de retorno e da duração da chuva (SANTOS, 2014).

Tempo de retorno é o intervalo médio em anos em que um determinado evento pode ocorrer ou ser superado e com significado diferente para séries anuais e parciais de tempo (VARELA, 2007).

Um grande obstáculo para o correto dimensionamento destes dispositivos é a falta de dados hidrológicos para dimensionamento dos projetos, sendo portanto necessário recorrer a metodologias que busquem preencher essas lacunas (TONI, 2013).

O conhecimento das relações entre intensidade, duração e frequência de chuvas intensas é de enorme importância para o dimensionamento e projeto de sistemas, estruturas e equipamentos de drenagem (LORENZONI *et al.*, 2014).

Para esse tipo de estudo utiliza-se o método estatístico de curvas IDF, as quais são criadas a partir de dados pluviométricos históricos do local, fornecendo a intensidade pluviométrica ou a altura precipitada em função da duração da chuva e do período de retorno.

Com séries de dados históricos de intensidade, duração e frequência de precipitações obtém-se as equações de chuvas intensas, as quais são de uso tradicional na engenharia hidrológica (KAISER *et al.*, 2014).

O trabalho clássico de estudos da relação entre intensidade, duração e frequência de precipitação pluvial no Brasil foi publicado em 1957 por Pfafstetter, com base em dados de postos meteorológicos do ministério da agricultura para 98 localidades (SOUZA *et al.*, 2012).

Os dados de precipitação empregados no trabalho de Pfafstetter foram provenientes de períodos distintos e anteriores a 1957, e as séries utilizadas foram de diferentes tamanhos e, em alguns casos, inferiores a três anos.

A obtenção de equações de chuvas intensas demanda a existência de pluviógrafos com séries razoavelmente longas e atualizadas de dados, porém nem todos os municípios dispõem de pluviógrafos com séries longas o suficiente para a geração de uma equação.

Com o aumento do número de anos de registros pluviográficos, as equações IDF devem ser atualizadas, pois não são estáticas temporalmente, podendo essas equações sofrerem mudanças significativas no decorrer do tempo (SILVA; ARAÚJO, 2013).

As equações de chuva do Brasil com mais de 20 anos de idade em regiões que tiveram crescimento acelerado nos últimos anos, devem ser revisadas no mínimo uma vez a cada 10 anos (ZUFFO, 2004).

Para locais que não dispõem de registros de precipitações que favoreçam uma analise em intervalos de tempo inferiores a 24 horas torna-se comum o uso de

coeficientes de desagregação genéricos (LORENZONI et al., 2013).

Diante do contexto apresentado, torna-se necessário realizar uma analise quantitativa e qualitativa atualizada, comparando as chuvas intensas obtidas com os coeficientes de desagregação da Companhia Ambiental do Estado de São Paulo - CETESB comumente utilizados nas elaborações de equações de chuva regionais com as chuvas intensas obtidas com os dados reais do posto pluviométrico em estudo.

1.1 Justificativa

O município de Bauru está localizado no interior do estado de São Paulo, na região centro-oeste Paulista, sendo um dos municípios mais populosos da região, onde segundo dados do Instituto Brasileiro de Geografia e Estatística – IBGE a cidade possuía em 2016 uma população estimada em 369.368 habitantes (2017).

Com o aumento da população torna-se necessária a construção de novos conjuntos habitacionais, infraestrutura e pavimentação. Junto com essas construções as áreas impermeabilizadas aumentam significativamente, ocasionando grandes enxurradas, alagamentos e enchentes.

Com a finalidade de evitar esses eventos, um projeto de drenagem é indispensável, sendo que quando bem planejados e bem executados contribuem em todos os aspectos de melhoria em um município, tanto em gastos desnecessários pós chuva abundante, como também evita vários tipos de doenças.

Para a elaboração de um projeto confiável, é necessário estimar as precipitações intensas com dados fidedignos afim de garantir um projeto durável, seguro e com a maior eficiência possível.

1.2 Objetivo geral

Comparar as precipitações intensas, equações e curvas IDF obtidas com as metodologias de uso de dados históricos reais e com a utilização de coeficientes genéricos de desagregação de chuvas elaborados pela CETESB.

1.3 Objetivos específicos

Coletar dados pluviométricos de precipitações máximas ocorridas em intervalo

de anos adequados para aplicar o método de Gumbel e realizar as análises de dados;

 Tratar os dados coletados com métodos estatísticos para obter dados confiáveis o suficientes para elaboração de equações de chuva e curvas IDF que possam ser comparadas.

1.4 Estrutura do trabalho

Este trabalho é constituído por sete capítulos. No primeiro capitulo é introduzido e justificado o contexto geral a ser analisado nos capítulos seguintes, sendo também expostos os objetivos a serem alcançados com o trabalho.

Posteriormente, no segundo capitulo foram apresentados os referenciais teóricos pesquisados de uma forma geral e complementados por assuntos de suma importância para a compreensão do tema.

Esses assuntos são as bacias hidrográficas, as precipitações, os mecanismos de formação e classificação das precipitações, chuvas intensas, a desagregação das precipitações, a distribuição de Gumbel e as relações IDF.

No terceiro capitulo é apresentado o desenvolvimento do tema, iniciando pelo universo da pesquisa, o qual se restringe a dados de precipitação compreendidos entre os anos de 2003 a 2015 e coletados do IPMET de Bauru.

No quarto capitulo é apresentado o desenvolvimento do trabalho iniciando pela análise de dados e prosseguindo com as séries de máximas anuais, desagregação de dados diários de precipitação, agregação de dados pluviográficos, máximos valores de precipitação agregada, distribuição de Gumbel aplicada aos dados desagregados e agregados, ajustes dos parâmetros regionais das equações de chuva, limitações da pesquisa e a descrição dos resultados obtidos.

As discussões a cerca do tema proposto são apresentadas no capitulo cinco o qual relaciona algumas literaturas pesquisadas com os resultados obtidos no desenvolvimento do trabalho.

No capitulo seis e sete, são expostas as considerações finais e conclusão respectivamente, as quais fazem uma explanação dos pontos de maior relevância do trabalho respondendo aos objetivos do trabalho.

2 REFERENCIAL TEÓRICO

A água é um recurso natural fundamental para a vida, onde o crescimento populacional, às incertezas acerca dos fatores climáticos e a crescente poluição hídrica são causas de grande preocupação humana (MORAES; JORDÃO, 2002).

De uma maneira geral, os impactos negativos que as vazões de enchentes causam à sociedade, tais como perdas econômicas, danos ao desenvolvimento e perdas de vidas humanas, levam a sociedade a repensar sobre os modelos existentes para planejamento e controle dessas vazões (SANTOS *et al.*, 2014).

Estruturas hidráulicas destinadas à condução e contenção do excesso de chuvas, como barragens, bacias de contenção, dentre outras, são projetadas mediante estimativa das precipitações futuras com objetivo de satisfazer questões relacionadas com a segurança e que possam promover um projeto economicamente racional (CANHOLI, 2014).

Devido à extensão territorial do Brasil, uma densa rede de observações hidrológicas possui alto custo de implantação e manutenção, sendo por esse motivo muito comum que o número de postos de observação seja reduzido em algumas regiões e quando existentes, por vezes possuem séries de curto intervalo de tempo de precipitações (ZULLO JUNIOR; PINTO; PINTO, 2005).

Segundo Tucci (2000) os dados de chuva de grande intensidade são fundamentais para a determinação do escoamento superficial onde a sua falta ou inexistência dificulta o cálculo seguro das vazões de enchentes ou vazões máximas.

2.1 Bacias hidrográficas

Bacia hidrográfica é uma área de captação de água proveniente de precipitação e que convergem os escoamentos para um único ponto de saída denominado exutório (CHIOQUETA, 2011).

Segundo o mesmo autor, o exutório é o ponto de menor altitude da bacia e para onde se deslocam as águas provenientes das precipitações.

A parcela do fluxo hídrico que escoa sobre o solo é aquela que não infiltrou devido ao solo ter atingido sua saturação superficial ou a intensidade de chuva ter sido maior que a capacidade de infiltração de água no solo, escoando dessa forma em trajetória definida pela topografia da bacia hidrográfica (BIER, 2013).

A delimitação de cada bacia hidrográfica se dá através de cartas topográficas, as quais demarcam os pontos de maior e menor altitude do relevo, as ligações dos pontos mais altos definem o posicionamento dos divisores de águas, enquanto que os pontos mais baixos da bacia interligam-se formando o rio principal (SILVA, 2011).

As águas da bacia hidrográfica são drenadas nas regiões compreendidas entre os divisores de águas e o rio principal, sendo estas regiões conhecidas como vertentes (PORTO; PORTO, 2008).

Além dos elementos já descritos neste trabalho, existem outros, os quais a seguir serão brevemente mencionados e descritos.

- Fundos de vale: São áreas adjacentes aos rios e que geralmente sofrem inundações;
- Cristas de elevação: São responsáveis pela separação da drenagem entre as bacias;
- **Sub-bacias:** São bacias de menor dimensão, geralmente ligadas a algum afluente do rio principal;
- Nascente: É a região onde a agua subterrânea consegue atingir a superfície, dando origem a um corpo hídrico;
- Áreas de descarga: São locais por onde a água emerge em direção a superfície do terreno;
- Área de recarga: São os locais onde ocorre a infiltração das águas no solo com a finalidade de recarregar o lençol freático.

Segundo Damame (2016) um fator também relevante na caracterização de uma bacia hidrográfica é a vegetação, a qual possui fundamental papel no desempenho da bacia hidrográfica.

2.2 Precipitação

Precipitação é o nome dado a toda água na forma líquida ou sólida que cai da atmosfera em direção ao solo e que pode ser caracterizada por sua intensidade, duração e frequência (RODRIGUES, 2008).

A precipitação é originada de nuvens formadas pelo resfriamento de massas de ar ocasionado pela expansão ao se elevar na atmosfera, podendo assumir diversas formas, tais como chuva, neve, garoa, granizo e orvalho (SANTOS; MEDEIROS; CARVALHO, 2016).

A quantidade de precipitação que incide numa bacia hidrográfica durante o ano é um dado determinante para a disponibilidade de água para abastecimento doméstico e industrial, controle de inundação e da erosão do solo (ARAI et al., 2010).

A ocorrência de precipitações é um processo que não permite uma previsão determinística com grande antecedência, passando a ser necessário para a grande maioria dos problemas hidrológicos, tratamentos dos dados de precipitação utilizando métodos estatísticos (CARVALHO, 2007).

Segundo Calgaro (2006) os conhecimentos relacionados à distribuição espacial e temporal da precipitação pluvial têm grande importância nas tomadas de decisões de ordem estratégica em atividades como a construção civil, transportes, dentre outras.

2.3 Mecanismos de formação e classificação das precipitações

As precipitações dependem das condições atmosféricas relacionadas a temperatura, pressão, umidade, vento e relevo, onde a elevação de massas de ar pode ocorrer por meio de mecanismos convectivos, frontais e orográficos, os quais dão origem às respectivas chuvas convectivas, frontais e orográficas (SAMPAIO, 2011).

Ainda segundo o mesmo autor, o resfriamento do ar para a condensação nas nuvens para formação de precipitação pode ocorrer pelos processos de expansão do ar, resfriamento direto e pela mistura de massas de ar saturadas com diferentes temperaturas, onde o principal processo é o de expansão do ar, sendo este o único capaz de proporcionar chuvas significativas, os demais processos de resfriamento somente possuem capacidade de originar nevoeiros, garoas e orvalhos.

As precipitações pluviométricas podem ser classificadas de acordo com suas características de formação, podendo ser frontais, orográficas ou convectivas (PILLAR, 1995).

As formações frontais são aquelas que ocorrem ao longo da linha de descontinuidade, separando duas massas de ar de características diferentes, são chuvas de grande duração, atingindo grandes áreas com intensidade média (LOIOLA; KOTESKI, 2015).

As formações frontais ocorrem pela interação de massas de ar quentes e frias, com a chegada de uma frente fria, forma-se junto a esta frente um gradiente de temperatura e os dias anteriores a chegada da frente fria possui como característica serem quentes (SAMPAIO, 2011).

Essas formações atuam sobre grandes bacias e com intensidade variável, tendendo a ter duração prolongada e abrangência de grandes áreas. Os processos frontais de grande extensão e duração são os que produzem inundações em grandes bacias (CINTRA, 2004).

As formações orográficas são aquelas que ocorrem quando o ar é forçado a transpor barreiras de montanhas, a precipitação formada por este tipo de formação varia com a altitude e atua sobre bacias pequenas e com intensidade variável, são chuvas de pequena intensidade e de grande duração e que cobrem pequenas áreas.

Os ventos quentes e úmidos provenientes do oceano encontram barreiras físicas, sobem, condensam e precipitam sobre áreas montanhosas, o vento que ultrapassa a barreira é seco, retirando umidade do ambiente, podendo gerar áreas desérticas.

A precipitação convectiva é provocada pela ascensão de ar devido às diferenças de temperatura na camada vizinha da atmosfera, forma-se quando o ar úmido aquecido fica menos denso e sobe e ao subir diminui a temperatura, condensando e precipitando (VASCONCELOS, 2013).

Segundo Mello e Viola (2012) as precipitações convectivas são formações locais com pequena abrangência espacial, alta intensidade e pequena duração, atingindo principalmente pequenas bacias e costuma ocorrer em climas tropicais principalmente no verão, sendo importante para as pequenas bacias hidrográficas com pequeno tempo de concentração.

2.4 Chuvas Intensas

As precipitações pluviométricas são elementos do clima que apresentam alta variabilidade temporal e espacial onde sua ocorrência em excessos ou em déficit geralmente causa prejuízos à produção agrícola, bem como transtornos à população em geral (RONDON, 2001).

A caracterização da variabilidade temporal das chuvas intensas é imprescindível para o devido controle do escoamento superficial em áreas urbanas e rurais.

As relações entre Intensidade Duração e Frequência (IDF) de chuvas intensas, tem sido ao longo do tempo uma importante ferramenta de previsão de eventos extremos e comumente empregados para elaboração de obras de drenagem em vários campos da engenharia (SANTOS *et al.*, 2009).

São denominadas chuvas intensas as precipitações que ocorrem em curta duração de tempo, grande intensidade e com formação de grande lâmina de água durante pequeno intervalo de tempo.

Por serem intensas, essas chuvas não conseguem infiltrar e se distribuir, saturando rapidamente e escoando pela superfície do solo, provocando erosão, enchentes e inundações (VARELA, 2007).

Devido a frequente aplicação em estimativas de vazão de projeto, o estudo das chuvas intensas torna-se muito relevante para os trabalhos de hidrologia aplicados em estimativas de vazão de projeto para dimensionamento de obras de drenagem, onde os dados de precipitação são obtidos através de registro de séries pluviográficas (ARAGÃO *et al.*, 2013).

A determinação da caracterização das chuvas intensas é dificultosa, pois em áreas rurais uma chuva pode ser considerada não prejudicial, enquanto que em áreas urbanas, devido a maior modificação ambiental decorrente da ação humana, os danos poderão ser expressivos e relevantes (OLIVEIRA, 2003).

Uma forma de identificar chuvas intensas é através das relações entre intensidade, duração e frequência, onde essas relações permitem caracterizar as precipitações máximas prováveis, relacionando a probabilidade de o evento ser igualado ou superado em sua intensidade e duração (VARELA, 2007).

As relações IDF devem ser obtidas a partir da análise de séries de chuvas intensas durante um intervalo de tempo representativo, onde essas relações obtidas possibilitam estimar parâmetros como o tempo de concentração e a distribuição temporal da precipitação no local de interesse através de modelos matemáticos (CLARKE; DIAS, 2003).

As séries anuais são constituídas pelos valores máximos de altura pluviométrica ocorrida em cada ano da amostra em estudo e as séries parciais são aquelas constituídas por alturas acima de um valor de referencia e independente do

ano que possa ocorrer (NERILO, 1999).

Ou seja, a diferença básica entre elas é que a primeira compreende o valor máximo para cada ano, e a segunda compreende somente os maiores eventos de chuvas superiores a uma determinada precipitação de referência.

O uso de séries parciais ocorre quando o número de anos de dados é pequeno e em geral menor que 12 anos e nesse caso os tempos de retorno utilizados também são inferiores a cinco anos, porém, quanto ao uso, as séries anuais possuem uso mais difundido que as séries parciais, pois são mais simples e sua obtenção é mais facilitada (SOBRINHO, 2011).

Segundo Back (2014) para chuvas intensas, existem vários trabalhos mostrando que a distribuição de Gumbel apresenta um bom ajuste e por isso tem sido largamente empregada, sendo necessário e indispensável para sua aplicação séries de máximos valores anuais.

2.5 Desagregação das Precipitações

A grande dificuldade de obtenção de dados provenientes de pluviógrafos contribuiu para que fossem desenvolvidos métodos para desagregar dados diários em escalas subsidiárias, e dentre esses métodos está o uso de coeficientes de desagregação de chuvas diárias (OLIVEIRA *et al.*, 2005).

A desagregação de chuvas máximas de 24 horas de duração é frequentemente realizada utilizando-se coeficientes genéricos, os quais são comumente aplicados em locais que dispõem somente de dados diários medidos com pluviômetros convencionais (SILVEIRA, 2000).

Esses coeficientes de desagregação são bastante utilizados na desagregação da chuva diária pela sua simplicidade e facilidade de aplicação, onde na maioria dos trabalhos das literaturas brasileiras que tratam de temas correlatos ao estudo de chuvas intensas, são utilizados os coeficientes desenvolvidos pela CETESB em 1980, os quais são apresentados na Tabela 1.

Tabela 1- Coeficientes de desagregação genéricos

Duração	Coeficientes
24h 24h-1	1,14
12h 24h ⁻¹	0,85
10h 24h-1	0,82
8h 24h-1	0,78
6h 24h-1	0,72
1h 24h-1	0,42
30 min h ⁻¹	0,74
25 min h ⁻¹	0,91
20 min h ⁻¹	0,81
15 min h-1	0,70
10 min h-1	0,54
5 min h ⁻¹	0,34

Fonte: CETESB - 1980.

Os coeficientes da Tabela 1 são relações médias de precipitação máxima com período de retorno entre 2 e 100 anos obtidos a partir dos estudos do engenheiro Otto Pfafstetter em 1957 os quais contém valores médios para todo o Brasil (FREITAS, 2016).

Os diferentes coeficientes de desagregação de chuva diária contribuem consideravelmente para determinação de parâmetros de curvas IDF e possuem relevante contribuição no dimensionamento de projetos de drenagem urbana (TEODORO *et al.*, 2014).

Freitas (2016) ainda inclui em seu trabalho que as equações geradas a partir de dados pluviométricos, empregando-se o método de desagregação podem apresentar desvios altos devido ao Brasil ter dimensões continentais e regimes de precipitação bastante diferenciados ao longo do seu território.

2.6 Distribuição de Gumbel e relações IDF

Devido às dificuldades de obtenção de longas séries de dados de variáveis hidrológicas, podem ser utilizadas distribuições de probabilidade para se prever eventos que venham a ocorrer em períodos de retorno que não se possui dados observados.

Distribuições hidrológicas, tais como chuva, ajustam-se satisfatoriamente a distribuição tipo I de Fisher- Tippett, também conhecida como distribuição de Gumbel, onde a importância dessa distribuição decorre do fato de ser aquela

com maior potencial de aplicação prática (GOMES, 2011).

Para chuvas intensas, existem vários trabalhos mostrando que a distribuição de Gumbel se ajusta bem e por isso tem sido largamente empregada, contudo, para sua aplicação é indispensável ter uma série de máximos valores anuais (BACK, 2014).

Segundo DNIT (2005), os modelos estatísticos possuem aplicação mais recomendável para períodos de retorno de, no máximo, 100 anos ou o dobro do período de dados disponíveis, onde nesses casos, os resultados entre os modelos estatísticos diferem pouco entre si.

As equações de chuva são relações que envolvem intensidade, duração e frequência (IDF) das precipitações regionais, fixando o período de retorno temse uma curva onde no eixo das abscissas está a duração e no eixo das ordenadas a intensidade da chuva, determinando assim curvas características (PAZ, 2004).

Para utilização das equações de chuvas nos dimensionamentos dos dispositivos de drenagem e no controle da erosão costuma-se utilizar a intensidade máxima média definida pelo quociente entre a máxima altura pluviométrica decorrida no intervalo de tempo por esse intervalo de tempo, geralmente expressa em mm/h ou mm/min (LOPES, 2006).

Quanto menor a duração da chuva maior é sua intensidade e as curvas IDF expressam equações onde os parâmetros locais são obtidos por análise de regressão linear com ajuste de potência (SANTOS *et al.*, 2015).

Gomes (2011) informa que a determinação da relação IDF deve ser deduzida a partir de uma série histórica suficientemente longa e representativa dos eventos extremos do local, considerando-se séries anuais ou séries parciais, onde a metodologia das séries anuais baseia-se na seleção das maiores precipitações anuais de uma duração escolhida.

3 PROCEDIMENTOS METODOLÓGICOS

3.1 Universo de pesquisa

Para a realização deste trabalho utilizou-se das informações oriundas da Estação Meteorológica Automática do Instituto de Pesquisas Meteorológicas da Universidade Estadual Paulista "Júlio de Mesquita Filho", campus de Bauru (SP), localizado na latitude 22,355°S, longitude 49,03°W e altitude de 620 metros a qual é representada na Figura 01.

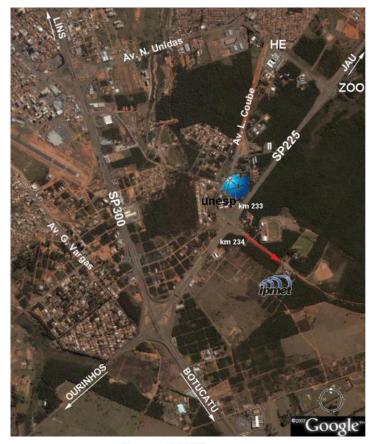


Figura 01 – Estação Meteorológica de Bauru (IPMET)

Fonte: IPMET – 2017.

O pluviógrafo é do tipo automático, modelo não fornecido pelo IPMET, apresentando autonomia para registrar chuvas em um intervalo de tempo de 24 horas subdivididas em intervalos de 5 minutos e registrando as chuvas em escala milimétrica.

Os dados oriundos desta estação possuem extensão .dat, a qual a apresentação dos dados pode-se dar através do software bloco de notas do

Windows.

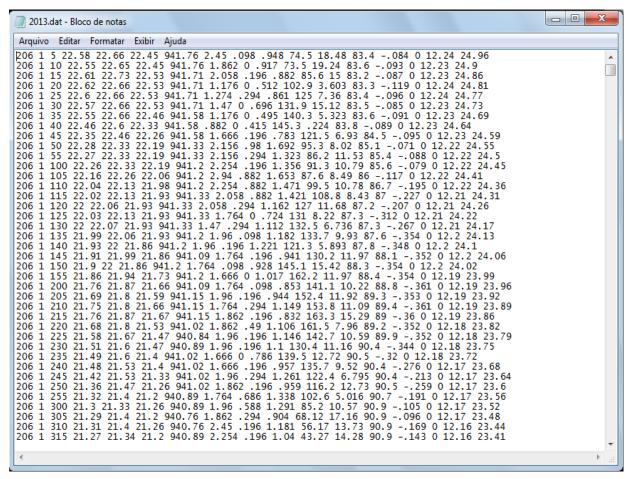
Para realização deste trabalho foram utilizados dados compreendidos entre os anos de 2003 e 2015, uma vez que os anos anteriores a 1997 não puderam ser localizados e os dados referentes aos anos de 1997, 1998, 1999, 2000 e 2002 conforme consta no Quadro 1 possuem muitas falhas significativas, as quais poderiam contribuir negativamente nos resultados finais a serem apresentados.

MESES ANO Fevereiro Abril Julho Janeiro Marco Maio Junho Agosto Setembro Outubro Novembro Dezembro 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 O mês possui todos os dados O mês possui perda de dados de um dia Legenda: O mês possui perda de dados maiores que um dia

Quadro 1- Relação de meses anuais e dados registrados

Fonte: Elaborado pelos autores – 2017.

O mês de agosto possui como característica ser um mês com baixos índices de precipitação, de modo que mesmo havendo falta de leitura em primeiro de agosto de todos os anos utilizados neste trabalho, esta falta de leitura não possui impacto considerável nos resultados, pois, conforme será discutido nos itens a seguir, para este estudo são utilizadas apenas as máximas precipitações.


As precipitações de menores intensidades serão utilizadas somente para o cálculo de média e desvio padrão, onde devido ao grande universo de dados, serão de baixa relevância os dados de meses com baixa precipitação.

3.2 Coleta de dados

Os dados de precipitação utilizados neste trabalho foram obtidos mediante solicitação escrita e autorizada dos responsáveis pelo IPMET, onde foram disponibilizados arquivos individuais mensais de todos dos anos compreendidos entre 1997 a 2015.

Conforme ilustrado na Figura 2 os arquivos fornecidos ao serem abertos possuíam tabulação imprecisa e sem a formatação necessária para processamento e cálculos.

Figura 2 – Dados de precipitação mensal coletados pela estação meteorológica

Fonte: IPMET - 2017.

Os dados usados nesse trabalho são referentes às alturas de precipitação ocorrida em intervalos regulares de 5 minutos, as quais foram posteriormente agregadas para tempos de 10, 20, 30, 60, 120, 240 720 e 1.440 minutos.

4 DESENVOLVIMENTO

4.1 Análise de dados

O propósito de se registrar precipitações em uma determinada localidade é obter uma série histórica ininterrupta de dados ao longo dos anos, possibilitando conhecer e prever o comportamento das variações de intensidade pluviométrica local.

Conforme ilustrado parcialmente na Figura 3, os dados processados deste trabalho foram submetidos a prévia análise para verificação de presença de falhas relevantes que poderiam prejudicar a confiabilidade das conclusões obtidas.

Figura 3 – Processamento inicial dos dados fornecidos pelo IPMET

	Α	В	С	D	E	F	G
1	DAD	DADOS BRUTOS DADOS TRABALHADO			TRABALHADOS		
2	1	5	0,25		DIA	PRECIPITAÇÃO	
3	1	10	0,25		1	12,192	
4	1	15	0,25		2	15,748	
5	1	20	0,51		3	1,524	
6	1	25	0,25		4	0,508	
7	1	30	0		5	7,366	
8	1	35	1,52		6	0	
9	1	40	0,51		7	0,254	
10	1	45	1,02		8	42,672	
11	1	50	0		9	0,254	
12	1	55	0		10	0	
13	1	100	0		11	11,176	
14	1	105	0		12	0,254	
15	1	110	0		13	0	
16	1	115	0		14	0	
17	1	120	О		15	0	
18	1	125	0		16	0	
19	1	130	0		17	0	
20	1	135	0		18	0	
21	1	140	0		19	11,938	
22	1	145	0		20	20,828	
23	1	150	0		21	0	
24	1	155	О		22	0	
25	1	200	0		23	0	
26	1	205	0		24	0	
27	1	210	0		25	0	
28	1	215	0		26	22,352	
Î4 4		2	001	2002 / 20	003 / 2004	/2005 2006 7	2007

Fonte: Elaborado pelos autores - 2017.

Os dados apresentados na Figura 3 foram obtidos mediante tratamento prévio das informações disponibilizadas no formato apresentado na Figura 2, onde com auxilio das ferramentas de importação e critérios de tabulação do Microsoft Excel foi possível processar as informações a transformá-las em um formato compatível para análise e cálculos posteriores.

Foram elaboradas várias abas na planilha Excel, sendo uma para cada ano, nas quais as precipitações foram registradas por dia e subdivididas em intervalos com período de medição de 5 minutos.

Nestas abas estão registrados todos os dias que compõe cada ano, subdividido entre 105 a 107 mil linhas de medição para cada ano, como a quantidade de dados é muito extensa passou a ser necessário o uso da fórmula do Excel =SOMASES(\$C\$2:\$C\$105142;\$A\$2:\$A\$105142;E3), a qual foi elaborada especialmente como finalidade de filtro, sendo melhor descrita a seguir.

Como cada dia do ano possui aproximadamente 288 medições de precipitação, frente ao grande universo de dados passou a ser necessário o uso da fórmula retro citada, a qual apresenta como resultado final a soma de todas as precipitações individuais ocorridas no período considerado e limitada a intervalos distintos e regulares de 24 horas separados para todos os dias do ano em análise.

Esta formula exemplificada acima soma todos os valores compreendidos entre as células C2 e C105142 sempre que o correspondente entre A2 e A105142 for igual a E3 e registrando o valor da operação em células sequenciais conforme os dias do ano e iniciando pela célula F3.

A variação da quantidade de linhas que compões cada aba se dá em virtude de haverem dias que não houve leitura e os anos múltiplos de 4 serem bissextos e possuírem um dia adicional.

No Quadro 2 a seguir estão representadas as precipitações totais, precipitação mínima ocorrida a cada 5 minutos, precipitação máxima ocorrida a cada 5 minutos, precipitação mensal, quantidades de dias em cada mês do ano e dias de registro pluviométrico no mês.

Para a precipitação total utilizou se a fórmula =SOMA(F3:F33), onde para cada mês foi indicado o inicio e o término do intervalo correspondente, para a precipitação mínima e máxima ocorrida em milímetros por dia, utilizou se respectivamente as formula =MÍN(K3:K33) e =MÁXIMO(K3:K33), onde após o sinal

de igual e a operação a se executar, foi indicado o inicio e termino do intervalo a ser verificado.

Para as maiores precipitações mensais, anuais com intervalo de 5 minutos e máxima anual diária foram utilizadas em todos os casos a fórmula =MÁXIMO(P2:P14), onde dentre os valores selecionados para verificação é eleito o maior valor dentre todos os verificados.

Quadro 2- Precipitação máxima do ano considerado

	MESES								
MÊS	PRECIPITAÇÃO TOTAL	PRECIPITAÇÃO MINIMA (5 min.)	PRECIPITAÇÃO MÁXIMA (5 min.)			DIAS REGISTRADOS			
JANEIRO	165,100	0,000	8,89	4	2,672	31	31		
FEVEREIRO	263,144	0,000	7,62		73,66	28	28		
MARÇO	43,688	0,000	2,286	1	3,208	31	31		
ABRIL	13,716	0,000	1,524		7,62	30	30		
MAIO	13,716	0,000	1,016		5,842	31	31		
JUNHO	12,192	0,000	3,81	1	2,192	30	30		
JULHO	34,290	0,000	3,048	1	0,922	31	31		
AGOSTO	15,494	0,000	0,762	1	4,732	31	30		
SETEMBRO	62,484	0,000	5,842	2	1,082	30	30		
OUTUBRO	57,404	0,000	3,302		20,32	31	31		
NOVEMBRO	65,534	0,000	8,64	2	5,148	30	30		
DEZEMBRO	250,952	0,000	7,62	5	4,864	31	31		

 P. MAX ANUAL (5 min.)
 8,890

 P. MAX ANUAL DIÁRIA
 73,660

Fonte: Elaborado pelos autores - 2017.

Os procedimentos descritos foram feitos para todas as abas de todos os anos, pois para todos os demais anos o objetivo era o mesmo, ou seja, mensurar a precipitação total diária para no final selecionar as maiores precipitações mensais e anuais.

4.2 Séries de máximas anuais

Após a verificação da qualidade dos dados do posto em estudo e seleção das maiores precipitações diárias anuais, foi criado um novo Quadro contendo cronologicamente a seleção de todas as precipitações máximas ocorridas em milímetros por dia em cada ano e apresentada através do Quadro 3.

Quadro 3- Série de máximas precipitações anuais

ANO	PRECIPITAÇÃO
ANO	MÁXIMA
2003	66,548
2004	53,086
2005	96,012
2006	73,660
2007	84,038
2008	53,086
2009	80,772
2010	61,722
2011	63,754
2012	98,806
2013	64,770
2014	73,914
2015	76,964
MÉDIA	72,856
D.P	14,462

Fonte: Elaborado pelos autores - 2017.

A penúltima linha apresenta o valor das médias entre todos os valores de precipitação elencados, onde no Excel foi utilizada a formula =MÉDIA(B3:B21) equivalente a equação matemática apresentada em 1.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \tag{1}$$

Onde:

- X̄: Média;
- Σ: Somatória;

• Xi: Valores;

n: Número de elementos.

O desvio padrão referente a serie de dados de precipitações máximas diárias é um item de grande importância para as próximas etapas deste trabalho, no excel foi calculado utilizando a expressão =DESVPAD.N(B4:B21), a qual é equivalente a equação matemática apresentada em 2.

$$\sigma = \sqrt{\frac{\sum_{i}^{N} (X - \overline{X})^{2}}{N - 1}} \tag{2}$$

Onde:

σ: Desvio Padrão da Série Observada;

Σ: Somatória;

• X: Média Precipitação;

X: Valor Precipitação;

• N: Número de elementos (anos).

Todos os dados mencionados nos quadros e que dizem respeito a altura de precipitação são mensurados em milímetro, inclusive os valores de media e desvio padrão.

4.3 Desagregações dos dados diários de precipitação

Para serem obtidas as equações de chuva por período de retorno e as curvas IDF a serem comparadas, foi necessário desagregar a precipitação diária em períodos de tempo compreendidos entre 5 minutos e 24 horas, encontrando assim a precipitação que ocorreu em um período de tempo reduzido.

Estes dados pluviométricos foram desagregados utilizando-se os coeficientes de desagregação da CETESB representados na Tabela 2 os quais são amplamente utilizados nas literaturas brasileiras que trata deste tema.

Tabela 2 - Coeficientes de desagregação de chuvas genéricos

Duração	Coeficientes
24h 24h-1	1,14
12h 24h-1	0,85
10h 24h-1	0,82
8h 24h-1	0,78
6h 24h-1	0,72
1h 24h-1	0,42
30 min h-1	0,74
25 min h ⁻¹	0,91
20 min h-1	0,81
15 min h-1	0,70
10 min h-1	0,54
5 min h-1	0,34

Fonte: CETESB - 1986.

O uso destes coeficientes ocorre comumente para a construção de relações Intensidade-Duração-Frequencia (IDF) onde não há disponibilidade de registros pluviográficos em durações reduzidas (OLIVEIRA *et al.*, 2000).

A obtenção das intensidades de chuva obtidas a partir dos valores de chuva desagregada se dará multiplicando o valor da série original pelo coeficiente de tempo desejado, gerando assim novos valores a serem aplicados nos cálculos.

4.4 Agregações de dados pluviográficos

As precipitações registradas nos históricos reais do posto pluviométrico em estudo e com menor intervalo de registro de medição de 5 minutos foram agregadas em durações de 10, 20, 30, 60, 120, 180, 360, 720, 1.080 e 1.440 minutos para posteriormente ser possível calcular e comparar as equações, curvas IDF e chuvas intensas obtidas com dados reais.

Esta agregação de dados foi feita mediante utilização de planilhas do Microsoft Excel a qual preliminarmente foram agregados os tempos de 5 minutos

em 10 minutos.

A alça de preenchimento do excel não permite que seja selecionado nas linhas subsequentes valor inicial de soma que não pertença ao final da soma da célula anterior e ao ser executada foi observado que se mostrou correto somente os valores apresentados em células alternadas, sendo, portanto, necessário utilizar formatações condicionais baseadas na numeração das linhas para filtrar e excluir os valores de linhas intermediárias.

A formula =éimpar(lin())*1 foi escolhida para selecionar as linhas de interesse,uma vez que esta formula permite que se alterne os algarismos 0 e 1 nas linhas da planilha e utilizando filtros do excel foi selecionado somente o conteúdo presente nas linhas impares para serem coladas na planilha definitiva que contem os demais tempos agregados e representada parcialmente na Figura 4.

MÉS 2013 D10 Fevereiro 3 Horário 11 12 13 14 15 16 17 18 19 119 0.254 0,254 121 122 123 124 125 126 127 128 129 130 131 132 133 134 19:30 19:40 19:50 0.254 0.254 0.254 20:00 0.254 20:10 1,016 3.048 1.016 0,508 20:40 0,508 1,524 20:50 1.016 21:00 2 032 21:10 1.016 0.254 21:20 0,508 21:30 0,254 0,254 135 136 137 138 139 21:50 22:00 0,254 0.254 0.254 22:10 2 286 22:20 0.2541.778 0.508 22:30 0,254 0,254 1,778 140 0,254 0,254 141 0,254 0,254 142 143 144 23:00 0,254 0.254 0,254 23:10 0,254 0,254 23:20 0.254 1.778 0.254 145 23:30 12.704 0.254 146 0,254 23:40 15.238 0.508 147 0,254 0.254 0.508 148 150 151 máximo 0,762 13,462 0.254 0,508 3,048 1,778 1,524 0.254 0.254 15,238 0.254 1,778 152 153 máximo 15.238 154 H + > > | d10 /d20 /d30 /d60 /d120 /d180 / d360 /d720 /d1080 /d1440 /😘

Figura 4 – Parte da planilha de agregação de dados de um mês

A planilha da Figura 4 registra os máximos valores diários e os máximos valores mensais das durações de 10, 20, 30, 60, 120, 180, 360, 720 e 1.440 minutos mensais, assim, foi necessário fazer para cada ano 12 planilhas cada uma correspondente a um mês em particular.

4.5 Máximos valores de precipitação agregada

Os dados obtidos na planilha de apoio temporária e apresentada na Figura 4 foram transcritos nos Quadros definitivos de 4 a 16 que representam os valores máximos anuais para cada tempo agregado de interesse.

Quadro 4- Série de máximas precipitações anuais de 2003

2003	ALTURA PLUVIOMÉTRICA (mm)									
2003	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	16,006	26,420	27,436	32,258	38,100	42,418	47,498	52,832	55,880	59,948
FEVEREIRO	14,474	22,856	27,682	31,238	37,300	37,592	38,608	41,656	42,164	42,164
MARÇO	5,080	9,652	13,208	16,764	18,300	19,558	20,066	26,670	28,194	28,448
ABRIL	11,684	22,606	32,004	38,862	43,400	44,958	53,594	53,594	53,594	53,594
MAIO	4,826	8,128	9,398	9,906	11,700	15,240	15,494	15,494	15,494	15,494
JUNHO	8,382	11,938	15,494	17,526	17,500	17,526	17,526	17,526	17,526	17,526
JULHO	2,032	3,302	3,810	4,572	5,800	6,604	8,128	11,176	11,938	12,446
AGOSTO	1,524	1,778	2,286	3,302	5,300	7,366	12,192	16,510	16,764	16,764
SETEMBRO	1,778	3,048	3,302	3,810	5,800	6,350	6,350	6,350	6,350	6,350
OUTUBRO	3,048	6,096	8,128	11,430	15,500	16,510	22,606	26,670	28,194	28,448
NOVEMBRO	12,696	20,062	29,460	40,128	48,800	49,780	49,780	52,320	66,548	66,548
DEZEMBRO	18,790	26,918	30,728	34,030	35,000	36,570	36,824	37,586	37,586	37,586
MÁXIMO	18,790	26,918	32,004	40,128	48,800	49,780	53,594	53,594	66,548	66,548

Fonte: Elaborado pelos autores - 2017.

A série de dados do ano de 2003 é apresentada no Quadro 4, onde estão transcritas todas as maiores precipitações divididas pelos tempos de agregação de 10, 20, 30, 60, 120, 180, 360, 720, 1.080 e 1.440 minutos, sendo apresentado na ultima linha desta tabela o valor máximo dentre todas as medições.

Nesta tabela é possível observar que os meses de julho a outubro foram os meses que apresentam os menores índices de precipitação, enquanto que janeiro, fevereiro, abril e novembro foram os meses que apresentam maiores índices de precipitação.

Quadro 5- Série de máximas precipitações anuais de 2004

2004	ALTURA PLUVIOMÉTRICA (mm)									
2004	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	12,700	22,352	24,892	26,162	27,200	27,686	27,940	27,940	29,718	34,798
FEVEREIRO	8,636	16,764	24,130	30,226	31,800	31,750	31,750	33,274	41,910	44,196
MARÇO	7,112	12,192	16,510	20,574	25,900	28,194	29,718	30,734	33,528	33,528
ABRIL	4,572	7,112	7,874	12,192	12,200	13,462	17,018	17,526	21,844	21,844
MAIO	17,522	30,980	36,568	40,632	41,900	43,426	43,680	43,680	43,680	43,680
JUNHO	1,270	2,540	3,556	6,604	8,400	9,652	10,414	10,414	10,414	10,414
JULHO	3,556	4,572	5,334	9,398	15,200	16,764	22,860	23,876	23,876	23,876
AGOSTO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SETEMBRO	2,286	4,064	4,064	4,064	4,064	4,064	4,064	4,064	4,064	4,064
OUTUBRO	4,318	7,112	7,874	11,864	17,000	19,558	21,844	22,098	22,352	41,656
NOVEMBRO	4,572	7,874	9,144	15,494	19,800	20,066	20,828	21,844	21,844	22,352
DEZEMBRO	11,940	18,544	19,052	19,052	26,400	27,940	29,974	41,658	47,246	92,966
MÁXIMO	17,522	30,980	36,568	40,632	41,900	43,426	43,680	43,680	47,246	92,966

A série de dados do ano de 2004 é apresentada no Quadro 5, onde é possível perceber que não houve precipitação no mês de agosto e o mês de setembro foi o mês que menos choveu.

Quadro 6- Série de máximas precipitações anuais de 2005

2005				ALTUI	RA PLUVIO	MÉTRICA	(mm)			
2000	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	12,446	19,304	23,876	34,290	54,400	63,754	88,138	104,902	118,618	120,904
FEVEREIRO	13,718	26,926	34,800	52,834	59,900	61,978	61,978	61,978	61,978	61,978
MARÇO	9,144	12,954	15,748	18,288	22,900	26,416	40,894	41,402	45,466	70,104
ABRIL	4,826	6,350	6,858	8,636	8,900	13,970	14,224	14,224	14,224	14,224
MAIO	9,652	11,938	12,700	13,208	16,800	19,812	29,464	41,910	47,752	48,768
JUNHO	5,334	10,414	11,176	12,192	12,400	12,446	12,446	15,748	21,082	23,368
JULHO	1,778	2,794	2,794	3,048	3,000	3,048	4,318	5,080	5,080	5,080
AGOSTO	5,842	5,842	5,842	5,842	5,800	5,842	6,350	11,684	11,938	11,938
SETEMBRO	9,402	11,180	11,180	11,434	11,400	12,196	17,018	19,558	19,812	20,066
OUTUBRO	8,890	14,986	18,796	22,098	22,400	24,384	25,400	26,924	47,498	51,562
NOVEMBRO	10,160	14,224	14,224	14,224	14,200	14,986	17,526	19,050	19,558	25,146
DEZEMBRO	4,572	6,604	6,858	10,414	16,000	20,828	22,860	22,860	22,860	22,860
MÁXIMO	13,718	26,926	34,800	52,834	59,900	63,754	88,138	104,902	118,618	120,904

No Quadro 6 estão representadas as precipitações ocorridas no ano de 2005, onde percebe-se que a maior precipitação de 1.440 minutos ocorreu em janeiro.

Quadro 7- Série de máximas precipitações anuais de 2006

2006	ALTURA PLUVIOMÉTRICA (mm)									
2000	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	12,954	17,018	22,352	36,068	40,900	41,402	42,672	42,672	42,926	42,926
FEVEREIRO	13,208	20,066	21,590	29,464	52,100	57,658	73,914	74,168	79,502	79,756
MARÇO	3,302	5,080	6,096	6,096	6,600	8,128	9,398	13,208	13,462	13,716
ABRIL	2,794	3,302	3,556	5,588	7,100	7,620	7,620	7,620	7,620	7,620
MAIO	1,778	3,302	4,318	5,588	5,800	5,842	5,842	5,842	5,842	6,350
JUNHO	4,572	8,863	10,160	11,430	12,200	12,192	12,192	12,192	12,192	12,192
JULHO	4,064	4,826	5,080	5,334	6,900	6,858	8,128	10,922	10,922	10,922
AGOSTO	1,524	2,794	3,556	5,080	8,900	12,700	15,494	15,494	15,494	15,494
SETEMBRO	9,652	12,192	12,954	14,732	14,700	18,034	18,542	21,082	21,082	21,082
OUTUBRO	5,588	7,112	8,382	11,938	16,800	19,812	20,320	20,320	21,082	24,384
NOVEMBRO	15,750	21,084	24,386	24,386	24,400	24,894	25,148	25,148	25,148	25,402
DEZEMBRO	11,938	16,510	17,780	19,304	23,600	23,876	25,908	32,766	33,528	35,306
MÁXIMO	15,750	21,084	24,386	36,068	52,100	57,658	73,914	74,168	79,502	79,756

Fonte: Elaborado pelos autores - 2017.

O Quadro 7 representa as precipitações ocorridas no ano de 2006, onde é possível perceber que no referido ano o mês que menos choveu foi o mês de maio.

Quadro 8 - Série de máximas precipitações anuais de 2007

2007	1		1	ALTU	RA PLUVIO	MÉTRICA	(mm)			
2007	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	14,224	19,050	21,844	31,242	35,100	35,052	36,068	36,576	39,116	45,212
FEVEREIRO	34,000	34,000	34,000	38,318	51,500	54,320	57,368	69,052	83,784	94,706
MARÇO	4,318	5,842	6,096	7,874	10,700	11,430	11,430	11,430	18,034	18,288
ABRIL	6,858	9,906	10,922	11,176	14,000	16,764	24,892	24,892	29,210	29,464
MAIO	2,286	2,794	3,556	4,064	4,600	5,080	9,652	17,272	22,606	22,860
JUNHO	0,508	0,762	0,762	1,016	1,300	1,270	1,524	2,032	2,032	2,794
JULHO	7,112	13,970	18,034	27,432	30,500	41,656	57,150	68,834	69,850	69,850
AGOSTO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SETEMBRO	0,508	1,016	1,270	1,524	1,500	1,524	1,524	2,540	2,540	2,794
OUTUBRO	8,890	9,652	9,906	9,906	9,900	9,906	11,938	22,098	24,384	30,226
NOVEMBRO	9,906	18,542	26,162	30,226	48,500	55,118	73,660	79,756	80,010	80,010
DEZEMBRO	6,604	11,176	13,462	16,002	23,600	23,876	24,130	32,766	33,782	35,306
MÁXIMO	34,000	34,000	34,000	38,318	51,500	55,118	73,660	79,756	83,784	94,706

O Quadro 8 representa as precipitações no ano de 2007, onde novamente percebe-se que não houve chuva em agosto.

Quadro 9- Série de máximas precipitações anuais de 2008

2000	ALTURA PLUVIOMÉTRICA (mm)									
2008	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	12,950	22,352	26,162	29,464	30,200	30,988	31,496	31,750	34,290	40,640
FEVEREIRO	8,890	14,732	17,272	31,242	45,700	59,436	67,818	68,072	68,326	71,628
MARÇO	12,444	19,810	23,874	25,652	28,400	30,732	45,464	45,464	45,972	46,226
ABRIL	14,734	21,592	25,148	26,926	26,900	26,926	30,986	36,574	36,574	36,574
MAIO	8,128	11,430	11,684	11,684	14,000	19,558	28,194	30,734	34,290	37,084
JUNHO	9,398	12,700	14,478	14,732	15,000	18,542	20,066	20,066	20,066	20,066
JULHO	0,762	1,270	1,270	2,286	2,800	2,794	4,572	4,572	5,334	5,334
AGOSTO	8,890	9,652	10,668	13,208	13,500	13,462	13,970	18,034	18,034	18,034
SETEMBRO	6,350	9,398	10,668	15,240	19,800	21,336	27,940	39,624	39,878	39,878
OUTUBRO	13,716	21,082	25,146	27,686	29,000	30,988	31,496	31,496	31,496	31,496
NOVEMBRO	14,990	28,956	34,016	40,386	42,400	42,418	42,672	45,466	45,466	67,560
DEZEMBRO	8,890	12,954	18,452	23,114	28,400	33,782	42,164	45,212	46,228	60,198
MÁXIMO	14,990	28,956	34,016	40,386	45,700	59,436	67,818	68,072	68,326	71,628

Fonte: Elaborado pelos autores – 2017.

O Quadro 9 representa as precipitações no ano de 2008, onde se verifica que as mais intensas precipitações ocorreram no mês de novembro.

Quadro 10- Série de máximas precipitações anuais de 2009

2009				ALTU	RA PLUVIO	MÉTRICA	(mm)			
2009	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	9,396	16,762	17,270	21,334	23,400	27,430	34,544	35,306	44,194	52,322
FEVEREIRO	9,906	15,494	17,526	21,082	21,300	22,860	29,972	31,496	39,116	40,894
MARÇO	16,770	29,978	42,424	43,948	44,200	44,456	44,964	44,964	44,964	44,964
ABRIL	1,778	2,032	2,540	2,794	3,600	3,556	3,810	3,810	3,810	3,810
MAIO	6,858	8,890	10,160	12,700	14,500	14,732	14,986	15,494	15,494	15,748
JUNHO	4,064	7,112	7,366	7,874	11,700	13,208	14,224	15,240	19,050	24,130
JULHO	4,064	7,620	8,128	9,398	11,200	11,684	13,970	16,510	19,812	25,654
AGOSTO	3,810	5,334	5,588	8,382	13,000	19,558	25,908	35,052	47,244	53,594
SETEMBRO	13,000	13,000	16,256	22,098	29,700	33,274	37,338	38,354	38,608	38,608
OUTUBRO	14,990	20,324	24,896	25,912	25,900	25,912	29,976	32,004	37,342	41,914
NOVEMBRO	8,636	16,002	19,812	26,924	27,400	27,432	32,004	38,100	42,418	42,418
DEZEMBRO	10,666	14,224	15,240	19,556	21,100	21,334	21,588	21,842	22,352	23,114
MÁXIMO	16,770	29,978	42,424	43,948	44,200	44,456	44,964	44,964	47,244	53,594

O Quadro 10 representa as precipitações no ano de 2009, onde se verifica que as maiores alturas de precipitação de 10 minutos ocorreram no mês de março.

Quadro 11- Série de máximas precipitações anuais de 2010

2010				ALTU	RA PLUVIO	MÉTRICA	(mm)			
2010	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	12,952	24,380	26,666	29,206	29,700	33,782	44,958	54,610	54,864	54,864
FEVEREIRO	5,842	7,366	7,874	7,874	10,200	11,430	12,192	12,446	12,446	12,954
MARÇO	3,810	7,366	7,874	8,128	10,200	15,748	18,034	27,178	27,178	29,464
ABRIL	8,890	13,716	14,224	16,764	21,300	25,908	36,576	57,658	60,198	64,008
MAIO	4,064	6,096	7,366	7,874	8,900	10,668	19,304	20,320	24,638	25,654
JUNHO	6,858	9,906	11,176	12,954	15,700	17,018	27,432	27,432	27,686	27,686
JULHO	5,080	6,858	7,112	11,176	14,200	20,066	27,432	36,068	44,196	56,896
AGOSTO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SETEMBRO	6,096	7,366	7,874	10,668	17,800	20,320	23,622	29,464	32,766	32,766
OUTUBRO	10,668	14,478	15,494	20,066	23,600	23,622	24,384	32,258	33,528	42,164
NOVEMBRO	8,890	14,732	18,542	21,336	23,100	23,114	23,368	23,622	23,622	23,876
DEZEMBRO	6,096	9,652	12,700	14,478	19,300	22,098	23,114	23,114	23,114	31,242
MÁXIMO	12,952	24,380	26,666	29,206	29,700	33,782	44,958	57,658	60,198	64,008

Fonte: Elaborado pelos autores – 2017.

O Quadro 11 representa as precipitações no ano de 2010, onde se verifica que no mês de agosto novamente não houve precipitação.

Quadro 12- Série de máximas precipitações anuais de 2011

2011				ALTU	RA PLUVIO	MÉTRICA	(mm)			
2011	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	15,490	28,950	37,840	42,158	42,700	42,666	42,666	51,562	58,928	71,628
FEVEREIRO	10,922	21,590	28,702	41,910	50,000	51,308	58,928	58,928	59,182	73,406
MARÇO	11,178	20,322	26,926	33,028	33,000	33,022	33,022	33,530	33,784	33,784
ABRIL	7,366	12,954	13,462	13,716	16,000	17,272	29,972	31,242	37,592	41,402
MAIO	10,418	17,276	18,800	20,578	20,800	22,610	22,610	22,610	22,610	22,610
JUNHO	4,826	8,128	10,414	12,954	14,500	19,050	24,384	24,384	24,384	24,638
JULHO	1,016	1,524	2,286	3,048	4,800	5,334	6,096	7,620	7,620	7,620
AGOSTO	4,826	6,604	8,382	9,652	10,400	10,922	18,288	19,588	21,082	21,590
SETEMBRO	0,508	0,762	1,016	1,270	1,800	1,778	2,032	2,032	2,032	2,032
OUTUBRO	10,410	18,796	21,590	25,654	31,200	32,512	42,160	42,160	42,668	42,668
NOVEMBRO	7,870	11,684	13,716	22,606	30,500	34,036	34,798	35,052	41,656	43,688
DEZEMBRO	18,790	27,176	29,716	34,034	49,000	65,024	74,930	75,184	79,756	79,756
MÁXIMO	18,790	28,950	37,840	42,158	50,000	65,024	74,930	75,184	79,756	79,756

O Quadro 12 representa as precipitações no ano de 2011, onde se verifica que dezembro foi o mês com as maiores precipitações para 10 e 1.440 minutos.

Quadro 13- Série de máximas precipitações anuais de 2012

2042				ALTU	RA PLUVIO	MÉTRICA	(mm)			
2012	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	10,160	16,256	20,828	30,226	40,400	46,482	77,724	82,042	82,042	98,806
FEVEREIRO	5,842	8,128	10,668	16,256	18,000	18,288	18,288	20,066	20,828	25,654
MARÇO	27,430	51,820	60,964	65,282	68,800	71,124	71,124	76,712	76,966	78,490
ABRIL	8,890	16,764	22,352	26,416	31,000	32,512	36,068	38,100	39,116	55,118
MAIO	6,858	7,620	9,398	16,510	19,800	21,844	36,322	41,656	41,656	41,656
JUNHO	3,556	6,096	7,366	9,906	16,000	20,320	30,480	40,386	43,180	52,578
JULHO	3,556	3,556	3,810	3,810	3,800	5,334	6,350	6,350	6,350	6,350
AGOSTO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SETEMBRO	5,334	9,652	10,922	12,700	19,100	27,432	44,196	58,166	72,136	72,390
OUTUBRO	6,350	7,112	8,890	9,144	10,200	11,176	11,938	13,462	13,716	13,716
NOVEMBRO	12,448	17,528	20,830	26,162	28,400	30,734	35,306	44,450	46,736	58,424
DEZEMBRO	8,382	10,922	11,938	13,970	15,700	17,018	18,034	24,892	25,400	26,416
MÁXIMO	27,430	51,820	60,964	65,282	68,800	71,124	77,724	82,042	82,042	98,806

Fonte: Elaborado pelos autores – 2017.

O Quadro 13 representa as precipitações no ano de 2012, onde se verifica que novamente não houve registro de chuvas no mês de agosto.

Quadro 14- Série de máximas precipitações anuais de 2013

2042				ALTU	RA PLUVIO	MÉTRICA	(mm)			
2013	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	15,750	27,686	30,020	53,340	63,200	63,754	64,262	64,516	70,612	72,898
FEVEREIRO	15,238	27,942	29,720	30,228	32,500	38,862	40,386	40,640	42,164	42,418
MARÇO	16,260	25,658	29,214	29,976	30,200	36,322	47,244	50,800	60,706	75,436
ABRIL	7,620	11,938	16,510	22,860	24,100	32,766	39,116	39,624	40,132	40,132
MAIO	6,350	11,938	14,478	20,828	28,700	31,242	33,020	54,356	60,452	61,722
JUNHO	8,636	14,224	16,764	19,050	21,600	23,368	23,368	23,368	23,622	24,384
JULHO	12,450	15,244	17,530	18,038	18,000	18,038	18,292	18,546	18,800	18,800
AGOSTO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SETEMBRO	11,934	18,792	21,586	26,412	33,300	34,540	38,858	40,382	40,382	40,382
OUTUBRO	9,906	12,192	17,526	19,304	19,600	21,590	30,480	35,306	36,068	36,068
NOVEMBRO	9,652	13,970	21,082	32,004	36,800	38,354	39,370	39,878	52,324	52,578
DEZEMBRO	5,334	6,350	6,604	6,858	8,900	10,160	15,494	17,526	19,558	19,558
MÁXIMO	16,260	27,942	30,020	53,340	63,200	63,754	64,262	64,516	70,612	75,436

O Quadro 14 representa as precipitações no ano de 2013, onde se verifica que novamente não houve registro de chuvas no mês de agosto.

Quadro 15 - Série de máximas precipitações anuais de 2014

2014				ALTU	RA PLUVIO	MÉTRICA	(mm)	,		
2014	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
JANEIRO	9,144	17,526	19,812	23,114	23,100	23,622	24,130	24,130	24,130	27,178
FEVEREIRO	7,620	12,700	16,764	24,130	32,300	35,560	38,352	47,244	49,022	49,784
MARÇO	13,210	22,862	23,370	26,418	28,200	28,196	35,308	36,070	39,880	42,166
ABRIL	6,350	8,890	11,176	15,240	21,100	24,130	24,638	24,638	24,638	24,638
MAIO	4,826	6,604	7,366	9,906	15,200	16,510	27,178	51,562	57,150	57,912
JUNHO	0,000	0,254	0,254	0,254	0,500	0,508	0,508	0,508	0,508	0,508
JULHO	1,016	2,032	2,540	4,572	5,800	6,350	9,398	13,462	14,478	14,478
AGOSTO	4,064	4,318	5,080	7,112	10,200	10,414	17,018	17,272	17,272	17,272
SETEMBRO	18,540	21,334	23,112	23,620	32,500	32,510	35,812	45,464	45,464	45,464
OUTUBRO	11,682	20,318	27,430	32,764	33,000	34,034	34,034	34,034	34,288	35,304
NOVEMBRO	10,668	16,764	20,320	23,876	24,100	24,130	24,130	26,924	33,020	41,402
DEZEMBRO	12,188	15,236	15,744	19,050	25,400	37,846	50,800	80,264	93,472	93,472
MÁXIMO	18,540	22,862	27,430	32,764	33,000	37,846	50,800	80,264	93,472	93,472

Fonte: Elaborado pelos autores – 2017.

O Quadro 15 representa as precipitações no ano de 2014, onde se verifica que o mês com a maior precipitação de 10 minutos foi setembro.

Quadro 16- Série de máximas precipitações anuais de 2015

2045				ALTU	RA PLUVIO	MÉTRICA	(mm)			
2015	10'	20'	30'	60'	120'	180'	360'	720'	1080'	1440'
JANEIRO	12,956	20,318	23,626	26,674	26,700	26,674	26,674	42,416	42,670	42,670
FEVEREIRO	10,920	14,478	17,018	21,844	24,100	24,892	25,146	25,146	31,240	31,494
MARÇO	23,370	40,390	50,042	66,042	72,400	72,392	72,392	98,300	98,300	101,856
ABRIL	8,128	11,684	16,764	16,764	16,800	16,764	17,780	20,320	20,320	20,320
MAIO	4,572	8,128	9,909	15,240	23,400	29,464	50,800	58,928	62,992	64,770
JUNHO	2,032	4,064	5,842	9,906	15,000	17,780	19,304	19,558	19,558	9,558
JULHO	7,620	11,430	14,224	20,574	22,600	24,130	25,908	27,432	28,194	31,242
AGOSTO	4,318	5,334	5,334	5,588	5,800	5,842	8,128	8,636	8,636	8,636
SETEMBRO	29,720	34,038	34,038	36,574	61,200	70,866	79,249	82,804	82,804	84,328
OUTUBRO	12,954	22,352	29,718	37,844	37,800	37,844	42,416	44,956	45,210	45,210
NOVEMBRO	17,780	22,098	25,146	34,036	40,400	42,672	45,974	45,974	60,452	74,930
DEZEMBRO	14,730	22,604	25,398	29,718	30,700	32,004	32,004	36,576	44,450	49,022
MÁXIMO	29,720	40,390	50,042	66,042	72,400	72,392	79,249	98,300	98,300	101,856

O Quadro 16 representa as precipitações no ano de 2015, onde se verifica que o mês com a maior precipitação de 10 minutos foi novamente setembro.

4.6 Distribuição de Gumbel aos dados desagregados

Após a desagregação dos dados em seus intervalos de tempo fixados, procurou se ajustar estes dados a uma distribuição de probabilidade a fim de prever eventos que venham ocorrer em um grande período de recorrência.

Para séries extremas de dados hidrológicos a distribuição de Gumbel se adequa satisfatoriamente, sendo essa distribuição muito utilizada na análise de frequência de eventos hidrológicos e na determinação de curvas IDF (NAGHETTINI; PINTO, 2007).

O período de retorno utilizado neste trabalho foi de 2, 5, 10, 25, 50 e 100 anos, os quais serão utilizados para o calculo da distribuição de Gumbel, utilizando se da equação 4 (SANTOS *et al.*, 2009).

$$\mathbf{h}_{TR} = \mathbf{a} - \mathbf{bLn} \left[Ln \left(\frac{\mathbf{T}_{R}}{\mathbf{T}_{R} - 1} \right) \right] \tag{4}$$

Onde:

- h_{TR}: Altura pluviométrica associada a um período de retorno;
- a: Parâmetro de distribuição de Gumbel para escala;
- b: Parâmetro de distribuição de Gumbel para posição;
- T_R: Tempo de Retorno (anos).

Utilizando o método dos momentos é definido pela equação 5 o parâmetro de distribuição de Gumbel para escala e pela equação 6 o parâmetro de distribuição de Gumbel para posição (MARTINS et al., 2016).

$$b = \frac{\sqrt{6}}{\pi} * \sigma \tag{5}$$

As alturas pluviométricas associadas a cada período de retorno foram obtidas calculando-se os parâmetros de escala e posição das respectivas equações 5 e 6 e os valores encontrados foram substituídos na equação 4 para se determinar a altura pluviométrica associada a cada período de retorno.

Para o referido cálculo, foi criada uma planilha no excel representada no Quadro 17, a qual serviu para efetuar e apresentar o resultado do cálculo das equações 4, 5 e 6 referente a distribuição de Gumbel conjuntamente com as intensidades de precipitação das chuvas desagregadas por tempo de retorno.

Quadro 17- Precipitações desagregadas por tempo de retorno por Gumbel

Média	72,856 mm		Beta	11,276				
Desvio	14,462 mm		Alfa	66,348				
				Distr	ibuição de	Gumbel (r	mm)	
DURAÇÃ	O DA CHUVA	TR	2	5	10	25	50	100
1	d	1,00	70,481	83,261	91,722	102,413	110,345	118,218
Desa	gregação de ch	nuvas		Intensid	ade das Pr	ecipitaçõe	s por TR	
24	h/d	1,14	3,348	3,955	4,357	4,865	5,241	5,615
12	h/d	0,85	5,691	6,723	7,407	8,270	8,910	9,546
10	h/d	0,82	6,589	7,783	8,574	9,574	10,315	11,051
8	h/d	0,78	7,834	9,254	10,195	11,383	12,265	13,140
6	h/d	0,72	9,642	11,390	12,548	14,010	15,095	16,172
4	h/d	0,63	12,655	14,949	16,469	18,388	19,812	21,226
2	h/d	0,52	20,890	24,678	27,186	30,355	32,706	35,040
1	h/d	0,42	33,746	39,865	43,917	49,036	52,833	56,603
30	min/h	0,74	49,944	59,001	64,997	72,573	78,193	83,772
25	min/30 min	0,91	54,539	64,429	70,976	79,249	85,387	91,479
20	min/30 min	0,81	55,221	65,234	71,864	80,240	86,454	92,622
15	min/30 min	0,7	63,629	75,167	82,806	92,458	99,618	106,725
10	min/30 min	0,54	73,628	86,979	95,818	106,987	115,272	123,496
5	min/30 min	0,34	92,717	109,529	120,660	134,724	145,157	155,514

Fonte: Elaborado pelos autores – 2017.

As formulas matemáticas apresentadas nas equações 4, 5 e 6 foram traduzidas para o padrão de cálculo excel, onde para o cálculo do α (alfa) foi utilizada a formula =E3-(0,5772*H3), para o calculo do β (beta) foi utilizada a formula =(RAIZ(6)/PI())*E4 e para as precipitações extremas foi utilizada a formula = \$H\$4-\$H\$3*LN(LN((G6/(G6-1)))) a qual foi adaptada a célula correta para cada tempo de retorno.

Após a estimativa das alturas das chuvas de duração de 1 dia, foram calculados para diferentes tempos de retorno e utilizando-se do método de Gumbel, as alturas de precipitação para as durações de 5, 10, 15, 20, 25 e 30 minutos e 1, 6,

8, 10, 12 e 24 horas.

Para o calculo foram utilizados os coeficientes da CETESB presentes na Tabela 02 e amplamente utilizados nos estudos hidrológicos e no Quadro 17 são apresentados também os valores calculados pela planilha das intensidades de precipitação obtidos para cada tempo de retorno especifico.

4.7 Distribuição de Gumbel aos dados agregados

Os maiores valores separados por duração e ano foram transcritos das Tabelas 04 a 16 para o Quadro 18 a qual é apresentada a seguir conjuntamente com o valor máximo por duração dentre todos os anos em estudo.

Quadro 18- Máximas precipitações por duração de chuva

ANOS				ALTUR	AS PLUVIO	MÉTRICAS	(mm)			
ANOS	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
2003	18,790	26,918	32,004	40,128	48,800	49,780	53,594	53,594	66,548	66,548
2004	17,522	30,980	36,568	40,632	41,900	43,426	43,680	43,680	47,246	92,966
2005	13,718	26,926	34,800	52,834	59,900	63,754	88,138	104,902	118,618	120,904
2006	15,750	21,084	24,386	36,068	52,100	57,658	73,914	74,168	79,502	79,756
2007	34,000	34,000	34,000	38,318	51,500	55,118	73,660	79,756	83,784	94,706
2008	14,990	28,956	34,016	40,386	45,700	59,436	67,818	68,072	68,326	71,628
2009	16,770	29,978	42,424	43,948	44,200	44,456	44,964	44,964	47,244	53,594
2010	12,952	24,380	26,666	29,206	29,700	33,782	44,958	57,658	60,198	64,008
2011	18,790	28,950	37,840	42,158	50,000	65,024	74,930	75,184	79,756	79,756
2012	27,430	51,820	60,964	65,282	68,800	71,124	77,724	82,042	82,042	98,806
2013	16,260	27,942	30,020	53,340	63,200	63,754	64,262	64,516	70,612	75,436
2014	18,540	22,862	27,430	32,764	33,000	37,846	50,800	80,264	93,472	93,472
2015	29,720	40,390	50,042	66,042	72,400	72,392	0,000	0,000	98,300	101,856
MÁXIMO	34,000	51,820	60,964	66,042	72,400	72,392	88,138	104,902	118,618	120,904
MÉDIA	19,633	30,399	36,243	44,700	50,862	55,196	58,342	63,754	76,588	84,110
DESVIO PADRÃO	7,179	9,176	11,538	12,811	14,056	13,378	23,713	24,865	15,237	15,833

Fonte: Elaborado pelos autores – 2017.

O Quadro 18 apresenta além das precipitações máximas, também a média e o desvio padrão calculados pelos métodos já descritos neste trabalho, os quais serão utilizados para o cálculo da distribuição de Gumbel.

No Quadro 19 é apresentado o parâmetro b o qual foi aplicado a Distribuição de Gumbel para extrapolar os eventos para os períodos de retorno de interesse, utilizando para o cálculo a fórmula representada pela equação 7 a qual foi

posteriormente transcrita para o excel utilizando a formula = $-\ln(-\ln((C25-1)/C25))$ a qual as células foram ajustadas ao tempo de retorno de interesse.

$$b = -\ln(-\ln(((TR - 1)/TR)))$$
(7)

Onde:

- b: Distribuição de Gumbel;
- In: Logaritmo Neperiano;
- T_R: Tempo de Retorno (anos).

Com o valor de b calculado foi possível calcular o fator de frequência K que está relacionada ao período de retorno e da distribuição de frequência utilizada no estudo, onde neste trabalho está se utilizando o método de Gumbel (Fabricio, 2011).

O fator de frequência é calculado utilizando-se a formula representada pela equação 8.

Onde:

- K: Fator de frequência;
- b: Valor da distribuição de Gumbel em cada período de retorno;
- 0,7797 e 0,45: Obtidos a partir da manipulação da função cumulativa de probabilidade de Gumbel.

Utilizando-se das equações 7 e 8 foram obtidos os valores de b e K para cada tempo de retorno e representados no Quadro 19.

Quadro 19 - Valores de b e K para cada tempo de retorno

TR	b	K
2	0,36651	-0,16423
5	1,49994	0,7195
10	2,25037	1,30461
25	3,19853	2,0439
50	3,90194	2,59234
100	4,60015	3,13674

Com os valores de b e K foram calculadas as alturas de precipitação para cada tempo de retorno e duração apresentada no Quadro 20.

Quadro 20- Precipitações por duração

TR (anos)		ALTURA PLUVIOMÉTRICA (mm)								
IN (allus)	10'	20'	30'	60'	120'	180'	360'	720'	1.080'	1.440'
2	117,799	91,197	72,486	44,700	25,431	18,399	9,724	5,313	4,255	3,505
5	148,791	111,003	89,089	53,918	30,487	21,607	12,567	6,804	4,864	3,979
10	173,993	127,110	102,591	61,414	34,599	24,216	14,880	8,016	5,359	4,365
25	205,837	147,461	119,651	70,885	39,795	27,513	17,801	9,548	5,985	4,853
50	229,460	162,559	132,307	77,911	43,649	29,959	19,969	10,684	6,449	5,215
100	252,909	177,545	144,869	84,886	47,475	32,387	22,121	11,812	6,910	5,574

Fonte: Elaborado pelos autores - 2017.

No Quadro 20 os valores referentes ao tempo de retorno de 2 anos correspondem ao produto da média de cada duração por um fator de conversão apresentando como resultado final os valores em milímetro por hora.

Os demais valores do Quadro 20 correspondem a soma da media com o produto entre o fator de frequência com o desvio padrão para cada tempo de retorno e duração específicos, acrescidos também de um fator de conversão para resultar os valores finais em milímetros por hora.

4.8 Ajustes dos parâmetros b, c e n para as equações IDF

Foram ajustados os parâmetros b, c e n das equações de chuva, onde tanto para a metodologia de desagregação com os coeficientes da CETESB quanto para metodologia utilizando-se os dados históricos reais foi utilizada a mesma metodologia de ajuste.

Para o ajuste dos parâmetros a, b e n das equações de chuva intensa, foram utilizadas as metodologias de calculo e processamento de dados adotados por Fabricio (2011).

A equação IDF utilizada para relacionar intensidade, duração e frequência da precipitação pluvial apresenta a forma geral da equação 9.

$$i = \frac{k * T^m}{(t+b)^n} \qquad (9)$$

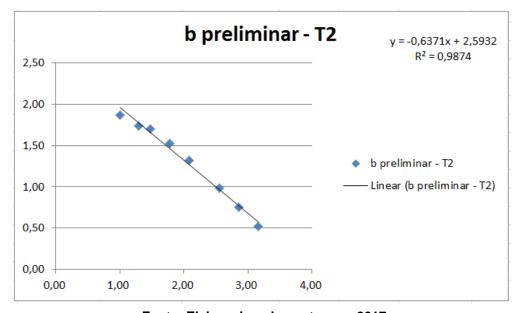
Onde:

- i: Intensidade máxima de chuva (mm);
- t: Tempo de duração da chuva (min);
- k, m e n: Parâmetros locais da equação;
- T: Tempo de Retorno (anos).

Com objetivo de determinar os valores dos parâmetros empíricos a equação 7 foi reescrita apresentando o formalismo apresentado na equação 10.

$$i = \frac{C}{(t+b)^n} \qquad (10)$$

Na equação 8 a letra C representa o conjunto do produto matemático (K*T^m) onde mediante a propriedade dos logaritmos esta equação foi linearizada transformando se numa reta através das propriedades dos logaritmos, passando a apresentar a forma mostrada na equação 11.


$$\log i = \log C - n * \log(t + b) \cdots (11)$$

Posteriormente para cada duração e para os períodos de retorno de interesse (2, 5, 10, 25, 50, e 100 anos) foram calculados os logaritmos Log i, Log t e Log (t+b).

O log i é o logaritmo do valor das intensidades para cada tempo de retorno, calculadas e apresentadas no Quadro 21 e o log de t é o logaritmo do tempo dado em minutos e expresso também no Quadro 21.

O log t+b apenas pode ser apresentado após o calculo e análise gráfica do parâmetro b, o qual foi obtido por tentativas, utilizando-se analise de regressão aplicada aos valores dos logaritmos da intensidade (log i) com relação aos logaritmos das durações (log t).

Em uma segunda etapa, utilizando a planilha Excel foi plotado em gráfico o Log (i) x Log (t), empregando-se analise de regressão linear foram gerados gráficos de dispersão conforme apresentado no Gráfico 1.

Gráfico 1- Ajuste preliminar T2

Fonte: Elaborado pelos autores - 2017.

Preliminarmente, utilizou-se o valor do coeficiente linear da equação do Gráfico 1 para o calculo de log de a, que é o expoente de base 10 do parâmetro a.

O coeficiente angular positivo da equação do Gráfico 1 fornece o valor do parâmetro n que será verificado e ajustado também no próximo gráfico.

Posteriormente foram escolhidos dois pontos de intensidades extremos de cada curva respectiva e associadas a um período de retorno com intensidades i1, i2

e tempos de duração de t1 e t2 e um terceiro ponto denominado i3 pertencente a cada uma das curvas foi calculado utilizando-se a equação 12.

$$i_3 = \sqrt{i_1 \cdot i_2} \qquad (12)$$

O cálculo da equação 10 foi realizado utilizando o excel com a fórmula=(D6*D19)^0,5, a qual eleva a 0,5 o produto do primeiro com o último valor de intensidade.

Através do gráfico foi coletado o valor da ordenada referente à i3, ou seja, t3, onde com esse valor calcula-se o valor preliminar do parâmetro b com a equação 13.

$$b = \frac{(t_3)^2 - t_1 \cdot t_2}{t_1 + t_3 - 2t_3} \tag{13}$$

Com o parâmetro b preliminar determinado, organizam-se os dados do logaritmo de (t+b) do Quadro 21, a qual agora completa é apresentada a seguir.

Quadro 21 - log t, log (t+b) e log i

TEMPO DE RETORNO - 2 ANOS									
DURAÇÃO	DA CHUVA	INTENSIDADE	log t	log (t+b)	lee!				
MINUTOS	HORAS	INTENSIDADE	log t	log (t+b)	log i				
10	0,167	73,6	1,000000	1,27278	1,8670423				
20	0,33	55,2	1,301030	1,45849	1,7421036				
30	0,5	49,9	1,477121	1,58816	1,6984859				
60	1	33,7	1,778151	1,83721	1,5282242				
120	2	20,9	2,079181	2,10972	1,3199483				
360	6	9,6	2,556303	2,56672	0,9841562				
720	12	5,7	2,857332	2,86257	0,7552126				
1440	24	3,3	3,158362	3,16099	0,5247637				

Fonte: Elaborado pelos autores - 2017.

Cabe salientar que o calculo da equação 11 foi realizado também utilizando o excel com a formula =(J\$12^2-(B\$6*B\$19))/(B\$6+B\$19-2*J\$12), a qual necessita preliminarmente que seja calculado o t3, log i3 e log t3 com as respectivas formulas

=10^J10, =(2,5052-J8)/0,606, =LOG(J6) que após calculadas foram substituídas na formula do excel de b para o calculo do valor deste parâmetro.

O ajuste final dos parâmetros b, c e n das equações IDF parciais para cada tempo de retorno utiliza outro gráfico plotado no excel e com eixos log (t+b) nas abcissas e log t nas ordenadas, o qual para o tempo de retorno de 2 anos é representado no Gráfico 2.

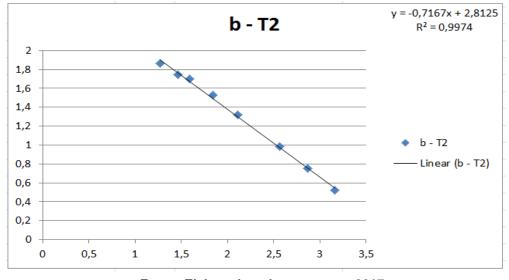


Gráfico 2- Ajuste definitivo T2

Fonte: Elaborado pelos autores - 2017.

Comparando as equações dos Gráficos 1 e 2 respectivamente y = -0.6371x+2.5932 $R^2 = 0.9874$ e y = -0.7167x+2.8125 $R^2 = 0.9974$ é possível verificar que houve modificação dos coeficientes angulares e lineares das equações e também do coeficiente de determinação R^2 o qual apresentou valor mais próximo de 1 na equação 2, demostrando que essa equação apresentou um ajuste mais adequado.

Os valores dos coeficientes angular e linear da equação do Gráfico 2 são substituídos nos cálculos referentes as equações 10 e 11 resultando em mudança do parâmetro b previamente encontrado, sendo encontrado agora os parâmetros b, c e n das equações IDF parciais para cada tempo de retorno, conforme Quadro 18.

Os parâmetros b, c e n em destaque no Quadro 22 serão utilizados como coeficiente regional para as equações IDF cabe salientar que neste trabalho serão apresentadas as equações parciais para cada tempo de retorno, onde a forma da equação será mantida, variando apenas os parâmetros b, c e n.

Quadro 22- Tabela para determinação dos parâmetros b, c e n

PARÂMETRO	D EQUAÇÃO
i3=	15,700
log (i3)=	1,196
log (t3)=	2,193
t3 (minutos)=	156,032
b preliminar=	8,740
log a=	2,813
c=	649,382
n=	0,717

Os procedimentos para os demais períodos de retorno se repetiu de forma análoga, sendo obtidas as equações IDF por tempo de retorno apresentadas no Quadro 23.

Quadro 23- Equações IDF obtidas para a cidade de Bauru

TEMPO DE RETORNO (ANOS)	EQUAÇÕES IDF - OBTIDAS COM COEF. DESAGREGAÇÃO	EQUAÇÕES IDF - OBTIDAS COM DADOS HISTÓRICOS REAIS
2	$i = \frac{932,395}{(t+16,565)^{0,772}}$	$i = \frac{1647,024}{(t+10,219)^{0,857}}$
5	$i = \frac{1102,554}{(t+16,592)^{0,772}}$	$i = \frac{2246,467}{(t+3,351)^{0,8166}}$
10	$i = \frac{1215,626}{(t+16,611)^{0,772}}$	$i = \frac{2524,643}{(t+9,626)^{0,7903}}$
25	$i = \frac{1356,126}{(t+16,588)^{0,772}}$	$i = \frac{2402,702}{(t+3,380)^{0,740}}$
50	$i = \frac{1461,167}{(t+16,589)^{0,772}}$	$i = \frac{2584,640}{(t+3,412)^{0,727}}$
100	$i = \frac{1566,751}{(t+16,609)^{0,772}}$	$i = \frac{2786,762}{(t+3,445)^{0,717}}$

4.9 Limitações da pesquisa

Durante a pesquisa, processamento dos dados e elaboração das equações parciais de chuva e curvas IDF as limitações estiveram associadas a escassos referenciais práticos de metodologia de cálculo, falta de ferramenta computacional para processamento dos dados, falhas em algumas séries pluviométrica do posto em estudo e a ausência de trabalhos deste tipo de comparação nas literaturas pesquisadas.

Durante a pesquisa bibliográfica constatou-se poucas referências que abordassem de forma clara a metodologia de cálculo, sendo apresentada na maioria das literaturas consultadas apenas a aplicação prática com os resultados encontrados sem apresentação dos detalhes para o calculo das equações de chuva.

A falta de ferramentas computacionais para o processamento dos dados limitou o campo de estudo principalmente pelo fato do processamento dos dados obtidos serem cansativos e demandar grande quantidade de tempo.

O posto da pesquisa também possuía muitas falhas de leitura, sendo esses dados com falhas descartados, pois o tratamento dos mesmos assim como os demais tipos de processamento necessitaria de maior quantidade de tempo e softwares para processar dados de regiões vizinhas com metodologia própria para preencher as falhas.

4.10 Descrição dos resultados

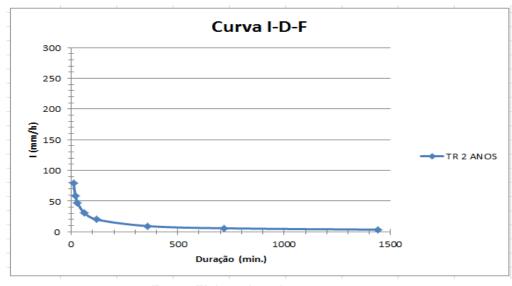
Com as equações de chuva parciais e utilizando-se separadamente os parâmetros ajustados por desagregação das chuvas diárias com coeficientes genéricos e os dados históricos reais agregados em durações determinadas foram obtidos os valores de precipitações intensas para cada tempo de retorno e correspondente a uma duração especifica.

4.10.1 Intensidades e curvas IDF obtidos por desagregação

As equações de chuva apresentadas no Quadro 23 foram calculadas individualmente para cada tempo de retorno utilizando a planilha de calculo Excel, a qual retornou dados em quadros individuais e posteriormente esses dados foram

plotados em gráficos também individuais e na mesma escala para apresentarem as curvas IDF.

O Quadro 24 expressa os dados de intensidade obtidos por desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 2 anos.


Quadro 24- Chuvas desagregadas para TR 2 anos

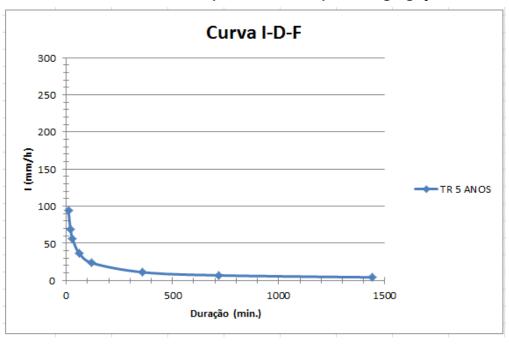
TR 2 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	79,487			
20	58,506			
30	47,235			
60	31,316			
120	19,974			
360	9,396			
720	5,766			
1.440	3,524			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 3 apresenta a curva IDF obtida com os parâmetros locais para dados do posto em estudo desagregados nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 2 anos.

Gráfico 3- Curva IDF para TR 2 anos por desagregação

O Quadro 25 expressa os dados de intensidade obtidos por desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 5 anos.


Quadro 25- Chuvas desagregadas para TR 5 anos

TR 5 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	93,911			
20	69,127			
30	55,811			
60	37,004			
120	23,602			
360	11,103			
720	6,814			
1.440	4,164			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 4 apresenta a curva IDF obtida com os parâmetros locais para dados do posto em estudo desagregados nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 5 anos.

Gráfico 4 - Curva IDF para TR 5 anos por desagregação

O Quadro 26 expressa os dados de intensidade obtidos por desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360,720 e 1.440 minutos com tempo de retorno de 10 anos.

Quadro 26- Chuvas desagregadas para TR 10 anos

TR 10	TR 10 ANOS				
DURAÇÃO	INTENSIDADE				
(minutos)	(mm/h)				
10	103,476				
20	76,164				
30	61,493				
60	40,772				
120	26,006				
360	12,235				
720	7,509				
1.440	4,589				

Fonte: Elaborado pelos autores - 2017.

O Gráfico 5 apresenta a curva IDF obtida com os parâmetros locais para dados do posto em estudo desagregados nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 10 anos.

Curva I-D-F

300
250
200
100

TR 10 ANOS

50

0

Gráfico 5 - Curva IDF para TR 10 anos por desagregação

Fonte: Elaborado pelos autores - 2017.

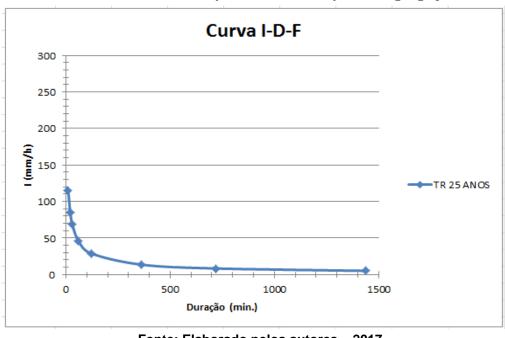
Duração (min.)

1000

1500

500

O Quadro 27 expressa os dados de intensidade obtidos por desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 25 anos.


Quadro 27- Chuvas desagregadas para TR 25 anos

TR 25 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	115,522			
20	85,030			
30	68,651			
60	45,516			
120	29,031			
360	13,656			
720	8,381			
1.440	5,122			

Fonte: Elaborado pelos autores – 2017.

O Gráfico 6 apresenta a curva IDF obtida com os parâmetros locais para dados do posto em estudo desagregados nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 25 anos.

Gráfico 6 - Curva IDF para TR 25 anos por desagregação

O Quadro 28 expressa os dados de intensidade obtidos por desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 50 anos.

Quadro 28- Chuvas desagregadas para TR 50 anos

TR 50 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	124,466			
20	91,615			
30	73,967			
60	49,041			
120	31,280			
360	14,714			
720	9,030			
1.440	5,518			

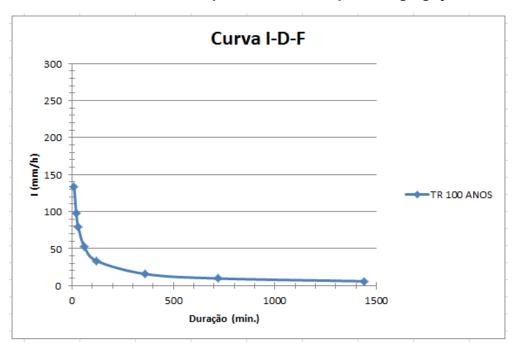
Fonte: Elaborado pelos autores - 2017.

O Gráfico 7 apresenta a curva IDF obtida com os parâmetros locais para dados do posto em estudo desagregados nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 50 anos.

Curva I-D-F 300 250 200 (mm/l) 150 TR 50 ANOS 100 50 0 Duração (min.)

Gráfico 7 - Curva IDF para TR 50 anos por desagregação

O Quadro 29 expressa os dados de intensidade obtidos por desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 100 anos.


Quadro 29- Chuvas desagregadas para TR 100 anos

TR 100 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	133,370			
20	98,167			
30	79,257			
60	52,549			
120	33,518			
360	15,768			
720	9,678			
1.440	5,915			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 8 apresenta a curva IDF obtida com os parâmetros locais para dados do posto em estudo desagregados nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 100 anos.

Gráfico 8 - Curva IDF para TR 100 anos por desagregação

Todos os gráficos apresentados nesta seção foram plotados com a mesma escala, utilizando as mesmas variáveis de eixo e com a mesma unidade de eixo, para com isso facilitar a análise e comparação dos resultados obtidos.

4.10.2 Intensidades e curvas IDF obtidos sem desagregação

As equações de chuva apresentadas no Quadro 23 obtidas sem desagregação de dados foram calculadas individualmente para cada tempo de retorno utilizando a planilha de cálculo Excel, as quais foram plotadas em gráficos também individuais e na mesma escala para apresentarem as curvas IDF.

O Quadro 30 expressa os dados de intensidade obtidos sem utilizar a desagregação de chuvas para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 2 anos.

Quadro 30- Chuvas sem desagregação para TR 2 anos

TR 2 ANOS					
DURAÇÃO INTENSIDAD					
(minutos)	(mm/h)				
10	135,197				
20	88,970				
30	67,647				
60	40,946				
120	24,134				
360	10,167				
720	5,847				
1.440	3,354				

Fonte: Elaborado pelos autores - 2017.

O Gráfico 9 apresenta a curva IDF obtida com os parâmetros locais para dados históricos reais do posto em nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 2 anos.

Curva I-D-F

300
250
200
100
100
50
Duração (min.)

Gráfico 9 - Curva IDF para TR 2 anos sem desagregação

O Quadro 31 expressa os dados de intensidade obtidos com dados históricos reais para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 5 anos.

Quadro 31- Chuvas sem desagregação para TR 5 anos

TR 5 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	164,652			
20	110,019			
30	84,046			
60	50,961			
120	29,916			
360	12,443			
720	7,086			
1.440	4,022			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 10 apresenta a curva IDF obtida com os parâmetros locais para dados históricos reais do posto em estudo nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 5 anos.

Gráfico 10 - Curva IDF para TR 2 anos sem desagregação

O Quadro 32 expressa os dados de intensidade obtidos com dados históricos reais para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 10 anos.

Quadro 32- Chuvas sem desagregação para TR 10 anos

TR 10 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	188,556			
20	127,103			
30	97,369			
60	59,099			
120	34,606			
360	14,279			
720	8,079			
1.440	4,555			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 11 apresenta a curva IDF obtida com os parâmetros locais para dados históricos reais do posto em estudo nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 10 anos.

Curva I-D-F

300
250
200
100
100
50
0
500
0
1000
1500
Duração (min.)

Gráfico 11 - Curva IDF para TR 10 anos sem desagregação

O Quadro 33 apresenta os dados de intensidade obtidos com dados históricos reais para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 25 anos.

Quadro 33- Chuvas sem desagregação para TR 25 anos

TR 25 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	218,664			
20 148,6				
30 114,2				
60	69,412			
120	40,545			
360	16,592			
720	9,328			
1.440	5,223			

Fonte: Elaborado pelos autores – 2017.

O Gráfico 12 apresenta a curva IDF obtida com os parâmetros locais para dados históricos reais do posto em estudo nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 25 anos.

Curva I-D-F

300
250
200
150
100
50
0
500
0
1000
1500
Duração (min.)

Gráfico 12 - Curva IDF para TR 25 anos sem desagregação

O Quadro 34 expressa os dados de intensidade obtidos com dados históricos reais para as durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 50 anos.

Quadro 34- Chuvas sem desagregação para TR 50 anos

TR 50 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	241,011			
20	164,655			
30	126,695			
60	77,033			
120	44,928			
360	18,296			
720	10,246			
1.440	5,713			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 13 apresenta a curva IDF obtida com os parâmetros locais para dados históricos reais do posto nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 50 anos.

Curva I-D-F

300
250
200
150
100
50
0
50
0
Duração (min.)

Gráfico 13 - Curva IDF para TR 50 anos sem desagregação

O Quadro 35 expressa os dados de intensidade obtidos com dados históricos reais nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 minutos com tempo de retorno de 100 anos.

Quadro 35- Chuvas sem desagregação para TR 100 anos

TR 100 ANOS				
DURAÇÃO	INTENSIDADE			
(minutos)	(mm/h)			
10	266,204			
20	182,653			
30	140,752			
60	85,635			
120	49,883			
360	20,227			
720	11,289			
1.440	6,271			

Fonte: Elaborado pelos autores - 2017.

O Gráfico 14 apresenta a curva IDF obtida com os parâmetros locais para dados históricos reais do posto em estudo nas durações de 10, 20, 30, 60, 120, 360, 720 e 1.440 e com tempo de retorno de 100 anos.

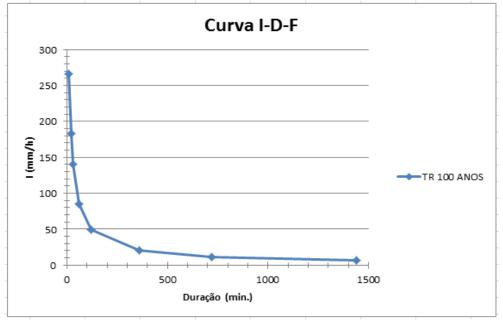


Gráfico 14 - Curva IDF para TR 100 anos sem desagregação

Todos os gráficos apresentados nesta seção foram plotados com a mesma escala, utilizando as mesmas variáveis de eixo e com a mesma unidade de eixo, para com isso facilitar a análise e comparação dos resultados obtidos.

4.10.3 Comparativos de resultados obtidos

Os valores obtidos e apresentados nas tabelas das seções anteriores foram colocados em uma tabela consolidada e em gráficos plotados no Microsoft Excel a titulo de comparação.

O Quadro 36 apresenta todos os valores de intensidade obtidos por desagregação com os coeficientes da CETESB obtidos através da aplicação dos parâmetros calculados para cada tempo de retorno.

Quadro 36- Intensidades para chuvas diárias desagregadas

DURAÇÃO (MINUTOS)	TEMPO DE RETORNO - TR (ANOS)					
DOKAÇAO (MINO103)	2	5	10	25	50	100
10	135,197	164,652	188,556	218,664	241,011	266,204
20	88,970	110,019	127,103	148,683	164,655	182,653
30	67,647	84,046	97,369	114,227	126,695	140,752
60	40,946	50,961	59,099	69,412	77,033	85,635
120	24,134	29,916	34,606	40,545	44,928	49,883
360	10,167	12,443	14,279	16,592	18,296	20,227
720	5,847	7,086	8,079	9,328	10,246	11,289
1.440	3,354	4,022	4,555	5,223	5,713	6,271
	-	•				

O Quadro 37 apresenta todos os valores de intensidade obtidos com dados históricos reais de chuvas diárias e obtidos através aplicação dos parâmetros calculados para cada tempo de retorno.

Quadro 37- Intensidades para chuvas diárias sem desagregar

DURAÇÃO (MINUTOS)	TEMPO DE RETORNO - TR (ANOS)					
DORAÇÃO (MINOTOS)	2	5	10	25	50	100
10	79,487	93,911	103,476	115,522	124,466	133,370
20	58,506	69,127	76,164	85,030	91,615	98,167
30	47,235	55,811	61,493	68,651	73,967	79,257
60	31,316	37,004	40,772	45,516	49,041	52,549
120	19,974	23,602	26,006	29,031	31,280	33,518
360	9,396	11,103	12,235	13,656	14,714	15,768
720	5,766	6,814	7,509	8,381	9,030	9,678
1.440	3,524	4,164	4,589	5,122	5,518	5,915

Fonte: Elaborado pelos autores – 2017.

Com as intensidades obtidas com dados desagregados e apresentados no Quadro 36 foi plotado o Gráfico 15, o qual a titulo de comparação restrita aos dados desagregados apresenta todas as curvas IDF para os tempos de retorno de 2, 5, 10, 25, 50 e 100 anos.

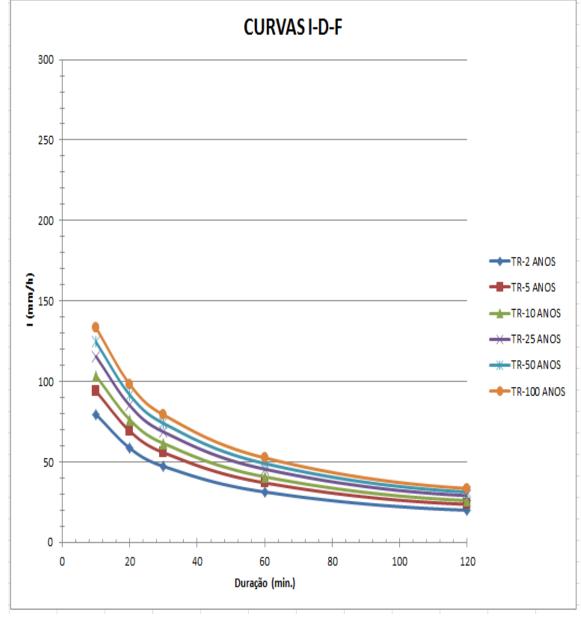


Gráfico 15 – Curvas IDF de todos os tempos de retorno por desagregação

O Gráfico 15 evidencia que para todos os tempos de retorno as maiores intensidades ocorrem nas menores durações, no caso, a menor duração utilizada neste trabalho foi de 10 minutos.

É possível observar também que as chuvas de duração mais longa, no caso 1.440 minutos, possuem pouca variação de intensidade quando comparado os diversos tempo de retorno calculado.

Com as intensidades obtidas com dados históricos e apresentados no Quadro 37 foi plotado o Gráfico 16, o qual a titulo de comparação restrita aos dados sem

desagregar apresenta todas as curvas IDF para os tempos de retorno de 2, 5, 10, 25, 50 e 100 anos.

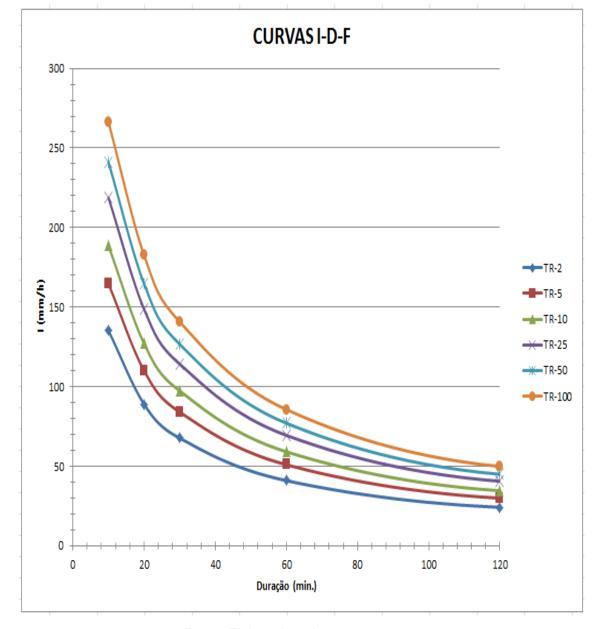


Gráfico 16 – Curvas IDF de todos os tempos de retorno sem desagregar

Fonte: Elaborado pelos autores - 2017.

O Gráfico 16 evidencia que para todos os tempos de retorno as maiores intensidades ocorrem nas menores durações, no caso, a menor duração utilizada neste trabalho foi 10 minutos.

É possível observar também que as chuvas de duração mais longa, no caso 1.440 minutos, possuem pouca variação de intensidade quando comparado os diversos tempos de retorno calculados.

O Gráfico 17 apresenta todas as curvas IDF obtidas por desagregação de chuvas e com dados históricos reais de chuvas e plotadas em um único gráfico, com as mesmas escalas de eixo usadas nos gráficos individuais.

CURVAS I-D-F 300,000 250,000 200,000 COEF, CETESB - TR2 COEF. CETESB - TR5 COEF. CETESB - TR10 COEF, CETESB - TR25 ₹ 150,000 COEF, CETESB - TR100 DADOS REAIS - TRZ DADOS REAIS - TR5 DADOS REAIS - TR10 DADOS REAIS - TR25 -DADOS REAIS - TR50 -DADOS REAIS - TR100 100.000 50,000 20 Dureção (min.)

Gráfico 17 – Curvas IDF de todos os tempos de retorno sem desagregar

Fonte: Elaborado pelos autores - 2017.

Existem dois valores de duração extremos utilizados nos cálculos, que são as chuvas mais intensas e que ocorrem nas menores durações e as chuvas menos intensas que ocorrem nas maiores durações.

A menor duração de chuva utilizada neste trabalho é de 10 minutos e com período de retorno de 2, 5 10, 25, 50 e 100 anos, onde as intensidades de chuva com e sem desagregação são apresentadas no Quadro 38.

Quadro 38- Intensidades de chuva para duração de 10 minutos

DURAÇÃO DE 10 MINUTOS		
TR	COEF. CETESB	DADOS REAIS
2	79,487	135,197
5	93,911	164,652
10	103,476	188,556
25	115,522	218,664
50	124,466	241,011
100	133,370	266,204

Fonte: Elaborado pelos autores - 2017.

O Gráfico 18 apresenta os valores de intensidade de chuva em função do tempo de retorno, sendo possível observar que para a duração de 10 minutos a intensidade de chuva obtida com dados históricos reais de chuva diária, apresenta valores muito superiores quanto comparadas para a mesma duração com valores desagregados.

Gráfico 18 - Curvas de Intensidade e tempo de retorno para duração de 10 minutos

Fonte: Elaborado pelos autores - 2017.

A maior duração de chuva utilizada neste trabalho é de 1.440 minutos e com período de retorno de 2, 5 10, 25, 50 e 100 anos, onde as intensidades de chuva com desagregação e utilizando-se dados históricos reais são apresentadas no Quadro 39.

Quadro 39- Intensidades de chuva para duração de 1.440 minutos

DURAÇÃO DE 1.440 MINUTOS		
TR	COEF. CETESB	DADOS REAIS
2	3,524	3,354
5	4,164	4,022
10	4,589	4,555
25	5,122	5,223
50	5,518	5,713
100	5,915	6,271

Fonte: Elaborado pelos autores – 2017.

O Gráfico 19 apresenta os valores de intensidade de chuva em função do tempo de retorno, sendo possível observar que para a duração de 1.440 minutos a intensidade de chuva obtida com dados históricos reais de chuva diária apresenta valores muito próximos quando comparada para a mesma duração com valores desagregados.

Gráfico 19 - Curvas de Intensidade e tempo de retorno para duração de 1.440 minutos

Fonte: Elaborado pelos autores - 2017.

Para duração de 1.440 minutos a diferença foi muito reduzida, a ponto das duas curvas plotadas no Gráfico 19 se sobreporem e dificultar a visualização e comparação, para que fosse possível verificar as duas curvas foi plotado outro gráfico com mudança de escala no eixo das intensidades de chuva e apresentado no Gráfico 20.

Duração de 1440 minutos - ampliado

Outração de 1440 minutos - ampliado

DAEE

IPMET

Tempo de Retorno - Anos

Gráfico 20 – Mudança de escada de intensidade para duração de 1.440 minutos

Fonte: Elaborado pelos autores - 2017.

Comparando os Gráficos 18 e 19 que apresentam respectivamente intensidades de chuva obtidas com dados históricos reais de chuvas e com desagregação de chuvas é possível observar que as diferenças entre as curvas desses gráficos possuem grande variação na duração de 10 minutos e diferença pouco expressiva na duração de 1.440 minutos.

5 DISCUSSÃO

Para a estação pluviométrica estudada foram verificadas grandes diferenças de intensidade de chuva obtidas a partir das equações IDF encontradas, as quais são resultados da variabilidade das durações de precipitações, método de processamento de dados pluviométricos e tempo de retorno.

Silva et al. (2012) relatam que com o emprego da metodologia de desagregação de chuvas diárias para obtenção de relações IDF para algumas localidades dos estados de Goiás e Distrito Federal, foram obtidos desvios que variaram de -1,6 a 43,9%, sem especificar a amplitude da amostra, período de retorno e duração a ser considerada, valor este relevante, porém inferior ao encontrado ao término deste trabalho. Na comparação de precipitações intensas com duração de 10 minutos calculadas com coeficientes de desagregação e com dados históricos reais houve variação de 70,08% a 99,59% para tempos de retorno respectivamente de 2 e 100 anos.

No estudo de Back, Oliveira e Henn (2012) houve uma comparação das relações estabelecidas pela CETESB através de seus coeficientes de desagregação aplicados no litoral de Santa Catarina, onde foram observadas diferenças que atingiram 50% na duração de 15 minutos, para as demais durações não foram mencionados os valores encontrados. Mesmo neste caso, os valores encontrados neste trabalho para precipitações com duração de 10 minutos ainda superaram os valores encontrados nas literaturas correlatas a este assunto, onde as precipitações obtidas com coeficientes de desagregação e com dados históricos reais apresentaram variações de 70,08% a 99,59% para tempos de retorno respectivamente de 2 e 100 anos.

No estudo da maior duração de precipitação apresentada neste trabalho, que foi de 1.440 minutos as intensidades obtidas com coeficientes de desagregação e com dados históricos reais variaram de - 4,82% a 6,10% para tempos de retorno respectivamente 2 e 100 anos.

Os valores percentuais positivos indicam o quão as intensidades de chuva obtida com coeficientes de desagregação foram menores que as obtidas com os dados históricos reais e os valores percentuais negativos indicam o quão as intensidades de chuva obtidas com coeficientes de desagregação foram maiores que as obtidas com os dados históricos reais.

Nota-se que a relevância dos desvios diminui a medida que se aumenta a duração das precipitações, porém, as precipitações mais importantes a serem consideradas são aquelas que ocorrem nas menores durações devido a estas serem mais intensas e importante para o dimensionamento de projetos de drenagem.

As comparações existentes na literatura pesquisada se limitam a restritos casos de comparação entre localidades distintas utilizando coeficientes de desagregação em diferentes localidades.

Na literatura pesquisada não foram encontradas comparações envolvendo dados hidrológicos reais e dados desagregados obtidos com coeficientes de desagregação genéricos.

Na grande maioria dos casos pesquisados e citados neste trabalho, os autores utilizaram-se dos coeficientes de desagregação de chuvas estipulados pela CETESB, dificultando ainda a comparação com outros coeficientes de desagregação genéricos.

As relações entre precipitações de diferentes durações apresentadas pela CETESB no ano de 1986 além de utilizarem períodos muito curtos, foram obtidas para uma média nacional.

Esses valores devem ser revistos e atualizados por tratar-se de um estudo baseado nas curvas IDF para 98 localidades do Brasil, obtidas por Pfafstetter em 1957 e utilizando períodos de dados muito curtos sendo, na ordem de 10 anos de dados pluviográficos para a maioria das localidades.

6 CONSIDERAÇÕES FINAIS

Este estudo teve como objetivo comparar as intensidades de chuva obtidas por meio de coeficientes de desagregação de chuvas e dados históricos reais, comparando e verificando as diferenças para posterior analise da viabilidade do uso desses coeficientes de desagregação em projetos de drenagem.

O estudo comprovou que as intensidades de chuva estimadas geradas com dados diários desagregados com os coeficientes de desagregação da CETESB na área de estudo subestimam os valores reais de intensidade previstos.

Os desvios chegam a 99,59% para período de retorno de 100 anos e durações de 10 minutos, o que é um valor bem elevado.

Essa subestimação, dependendo da duração e tempo de retorno considerado pode ser um problema, pois a intensidade sendo mais baixa que o real, trabalha contra a segurança, levando ao subdimensionamento de projetos de drenagem e acarretando falhas e mal funcionamento dos sistemas de drenagem urbana, podendo ocorrer enchentes e transbordamento de corpos hídricos.

É importante salientar que a medida que sejam incorporados novos dados de chuvas às séries históricas disponíveis, são necessárias ocorrência de revisões das equações de chuva obtidas afim de verificar o comportamento e adequabilidade dos estudos disponíveis.

A existência de equação de chuvas atualizada para fins de auxílio aos estudos hidrológicos é de fundamental importância para evitar o subdimensionamento de projetos hidráulicos e de drenagem.

7 CONCLUSÃO

As equações e curvas IDF obtidas respectivamente com os dados históricos reais e com coeficientes de desagregação variaram consideravelmente dependendo da duração e tempo de retorno considerado, apresentando nas chuvas de duração de 10 minutos diferenças de intensidade próximas a 100%.

Os gráficos apresentaram um panorama visual da variação das intensidades conforme o método de cálculo utilizado, ademais, os gráficos são oriundos das equações IDF encontradas representando, portanto o comportamento destas equações conforme se variam os tempos de retorno e duração de chuva.

Pode-se concluir, portanto, com este estudo que há diferenças significativas nos valores de intensidades das chuvas e gráficos IDF obtidos a partir do método de uso dos coeficientes de desagregação da CETESB quando comparados ao método que utiliza os dados históricos reais do posto em estudo e dependendo da duração e tempo de retorno considerado, o projeto poderá estar sendo subdimensionado.

REFERÊNCIAS

- ARAGÃO, R. de.; et al. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. **Revista Brasileira de Engenharia Agrícola e Ambiental**. Campina Grande, v. 17, n. 3, p. 243-252, 2013. Disponível em: < http://www.agriambi.com.br/revista/v17n03/v17n03a01.pdf>. Acesso em: 09 mai. 2017.
- ARAI, F. K. et al. Espacialização da precipitação e erosividade na bacia hidrográfica do Rio Dourados MS. **Eng. Agríc.** Jaboticabal, v. 30, n. 5, p. 922-931, out. 2010. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-6916 2010000500014>. Acesso em: 15 mai. 2017.
- BACK, A. J. Chuva de projeto para drenagem superficial no estado de Santa Catarina. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRICOLA, XLII, 2014, Campo Grande. **Anais...**Disponível em: http://www.sbea.org.br/conbea/2014/anais/R0179-3.pdf>. Acesso em: 14 mai. 2017.
- BACK, A. J.; OLIVEIRA, J. L. R.; HENN, A. Relações entre precipitações intensas de diferentes durações para desagregação da chuva diária em Santa Catarina. **Revista Brasileira de Engenharia Agrícola e Ambiental**. Campina Grande, v. 16, n. 4, p. 391-398, 2012. Disponível em: < http://www.scielo.br/scielo.php?Script=sci_ arttext &pid=S1415-43662012000400009>. Acesso em: 08 out. 2017.
- BARBOSA, F. de. A. dos. R. **Medidas de proteção e controle de inundações urbanas na bacia do rio Mamanguape/PB.** 2006. 115f. Dissertação (Mestrado em Engenharia Urbana) Centro de Tecnologia/Universidade Federal da Paraíba UFPB, João Pessoa, 2006. Disponível em: < http://www.cprm.gov.br/publique/ media/ diss_f ranciscobarbosa.pdf>. Acesso em: 12 mar. 2017.
- BIER, F. B. Caracterização morfométrica e hidrológica da bacia hidrográfica da lagoa da Conceição, Florianópolis SC. 2013. 115f. Trabalho de Conclusão de Curso (Graduação em Engenharia Sanitária e Ambiental) Universidade Federal de Santa Catarina. Florianópolis, 2013. Disponível em: https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/124962/TCC%20II%20-%20Felipe%20 Bier.pdf? sequence=1&isAllowed=y>. Acesso em: 01 jun. 2017.
- CALGARO, M. Análise da variação espaço temporal dos parâmetros para a modelagem estocástica da precipitação pluvial diária no Rio Grande do Sul. 2006. 127f. Tese (Doutorado em Engenharia Agrícola) Universidade Federal de Santa Maria, Santa Maria, 2006. Disponível em: http://cascavel.cpd.ufsm.br/tede/tde_arquivos/11/TDE-2007-10-22T164040Z-917/Publico/MARCELOCALGARO.pdf. Acesso em: 31 mai. 2017.
- CANHOLI, A. P. **Drenagem urbana e controle de enchentes.** 2. ed. São Paulo: Oficina de Textos, 2014. Disponível em: . Acesso em: 02 jun. 2017.

- CARVALHO, A. C. A. Caracterização da rede pluviométrica do estado de Sergipe e aplicação das redes neurais para preenchimento das falhas. 2007. 117f. Dissertação (Mestrado em Desenvolvimento e Meio Ambiente) Universidade Federal de Sergipe, Sergipe, 2007. Disponível em: https://bdtd.ufs.br/bitstream/tede/1225/1/ADRIANA_CAVALCANTE_AGUIAR_CARVALHO.pdf. Acesso em: 29 mai. 2017.
- CHIOQUETA, J. E. **Diagnostico ambiental da bacia hidrográfica do rio Pato Branco**. 2011. 59f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) Universidade Tecnológica Federal do Paraná. Pato Branco, 2011. Disponível em: http://repositorio.roca.utfpr.edu.br/jspui/bitstream/1/234/1/PB_COECI_2011_2_02.pdf>. Acesso em: 22 mai. 2017.
- CINTRA, F. M. Geração de mapas com isolinhas de intensidade de precipitação para o Brasil. 2004. 37f. Monografia (Bacharelado em Engenharia Civil) Universidade São Francisco. Itatiba, 2004. Disponível em: . Acesso em: 10 mai. 2017.
- CLARKE, R. T.; DIAS, P. L. da. S. **As necessidades de observação e monitoramento dos ambientes brasileiros quanto aos recursos hídricos**. Disponível em:. Acesso em: 06 mai. 2017.
- DAMAME, D. B. Vulnerabilidade ambiental e atributos do solo nas sub bacias do Rio das Pedras e Baixo Anhumas Campinas/SP. 2016. 136f. Dissertação (Mestrado em Sistemas de infraestrutura Urbana) Pontifícia Universidade Católica de Campinas, Campinas, 2016. Disponível em: http://tede.bibliotecadigital.puc-campinas.edu.br:8080/jspui/bitstream/tede/138/1/Desiree%20Baldin%20Damame.pd f>. Acesso em: 09 jun. 2017.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA DE TRANSPORTES DNIT. **Manual de Hidrologia Básica para Estruturas de Drenagem**. Disponível em: < http://ipr.dnit.gov.br/normas-e-manuais/manuais/documentos/715_manual_de _hidrologia_basica.pdf>. Acesso em: 12 out. 2017.
- DIAS, R. H. S. et al. Aplicação de geotecnologias na verificação da Influência do uso e ocupação do solo no escoamento superficial na cidade de Ji-Paraná-RO. **Revista Brasileira de Geografia Física**. Rondônia, v. 08, n. 05, p. 1493-1508, 2015. Disponível em: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/viewArticle/1207>. Acesso em: 10 mar. 2017.
- FABRICIO, G. M. **Proposta de equação de chuvas intensas para o município de Jáhu-SP.** 2011. 91f. Monografia (Graduação em Tecnologia em Meio Ambiente e recursos Hídricos) Faculdade de Técnologia de Jahu- FATEC. Jahu, 2011.

- FREITAS, E. da. S. Determinação e comparação de curvas idf com dados pluviográficos e pluviométricos na bacia hidrográfica experimental do riacho Guaraíra- PB. 2016. 61f. João Pessoa, 2016. Disponível em:http://security.ufpb.br/ccec/contents/documentos/tccs/2015.2/determinacao-e-comparacao-de-curvas-idf-com-dados-pluviograficos-e-pluviometricos-na-bacia-hidrografica-experimental-doriacho-guaraira-pb.pdf>. Acesso em: 03 out. 2017.
- GOERL, R. F.; KOBIYAMA, M.; PELLERIN, J. R. G. M. Proposta metodológica para mapeamento de áreas de risco a inundação: estudo de caso do município de Rio Negrinho SC. **Boletim de Geografia**. Maringá, v. 30, n. 1, p. 81-100, 2012. Disponível em: http://ojs.uem.br/ojs/index.php/BolGeogr/article/view/13519/9407>. Acesso em: 21 mar. 2017.
- GOMES, A. O. Modelagem estatística da precipitação estudo de caso: bacia do rio Taquarizinho/MS. 2011. 63f. Dissertação (Mestrado em Saneamento Ambiental e Recursos Hídricos) Universidade Federal do Mato Grosso do Sul, Campo Grande, 2011. Disponível em: https://sistemas.ufms.br/sigpos/portal/trabalhos/download/235/cursold:33. Acesso em: 11 out. 2017.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. **Base de informações municipais**. Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=350600&search=sao-paulo|bauru>. Acesso em:15 mar. 2017.
- KAISER, I. M. et al. **Equação de chuvas intensas para o município de Jaú-estado de São Paulo Brasil:** proposta de uma equação geral e análise do seu desempenho. Disponível em: . Acesso em: 12 mar. 2017.
- LOIOLA, L.; KOTESKI, T. A. **Projeto para captação e uso de água pluvial em um centro de atenção integral à criança e ao adolescente CAIC.** 2015. 100f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) Universidade Tuiuti do Paraná. Curitiba, 2015. Disponível em: http://tcconline.utp.br/media/tcc/2017/06/PROJETO-PARA-CAPTACAO-E-USO-DE-AGUA-PLUVIAL.pdf. Acesso em: 03 jun. 2017.
- LOPES, F. H. Y. Estudo comparativo entre equações de chuvas para o município de Joinville, SC. 2006. 80f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) Universidade do Estado de Santa Catarina. Joinville, 2006. Disponível em: https://prefeituradigital.joinville.sc.gov.br/public/prefeituradigital/servicos/anexos/ANEXO%20A%20%E2%80%93%20">https://prefeituradigital.joinville.sc.gov.br/public/prefeituradigital/servicos/anexos/ANEXO%20A%20%E2%80%93%20">https://prefeituradigital.joinville.sc.gov.br/public/prefeituradigital/servicos/anexos/ANEXO%20A%20%E2%80%93%20">https://prefeituradigital.joinville.sc.gov.br/public/prefeituradigital/servicos/anexos/ANEXO%20A%20%E2%80%93%20">https://prefeituradigital.joinville.sc.gov.br/public/pref
- LORENZONI, M. Z. et al. Chuvas intensas para a microrregião de Cianorte/PR, Brasil: Uma avaliação a partir da desagregação de chuvas diárias. **Enciclopédia Biosfera**. Goiânia, v. 9, n. 17, p. 656, 2013. Disponível em: http://www.conhecer.

- org.br/enciclop/2013b/CIENCIAS%20AGRARIAS/CHUVAS.pdf>. Acesso em: 11 mar. 2017.
- LORENZONI, M. Z. et al. Curvas Intensidade-Duração-Frequência de Chuvas intensas de Cidade Gaúcha e Guaporema-PR. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRICOLA, XLIII, 2014, Campo Grande. **Anais...**Disponível em: < http://www.sbea.org.br/conbea/2014/anais/R0391-1.pdf>. Acesso em: 10 mar. 2017.
- MARTINS, D. et al. Comparação de duas metodologias de obtenção da equação de chuvas intensas para a cidade de Caraguatatuba (SP). Disponível em: http://revistadae.com.br/artigos/artigo_edicao_207_n_1679.pdf>. Acesso em: 02 ago. 2017.
- MELLO, C. R. de.; VIOLA, M. R. **Mapeamento de chuvas intensas no estado de Minas Gerais.** Disponível em: http://www.sbcs.org.br/wp-content/uploads/2013/02/V37N1a04.pdf. Acesso em: 07 jun. 2017.
- MONTEIRO, L. R.; KOBIYAMA, M. Proposta de metodologia de perigo de inundação. **Rega**, v. 10, n. 2, p. 13-25, jul/dez. 2013. Disponível em: https://www.ufrgs.br/gpden/wordpress/wp-content/uploads/2015/04/Monteiro-e-Kobiyama-2013-REGA.pdf. Acesso em: 10. mar. 2017.
- MORAES, D. S. de. L.; JORDÃO, B. Q. Degradação de recursos hídricos e seus efeitos sobre a saúde humana. **Revista de Saúde Pública**. Corumbá, v. 36, n. 3, p. 370-374, 2002. Disponível em: http://www.scielo.br/pdf/rsp/v36n3/10502. Acesso em: 11 jun. 2017.
- NAGHETTINI, M.; PINTO, E. J. de A. **Hidrologia Estatística**. Belo horizonte: CRPM, 2007. 561p.
- NERILO, N. **Pluviometria e Chuvas Intensas no estado de Santa Catarina.** 1999. 191f. Dissertação (Mestrado em Engenharia Ambiental) Universidade Federal de Santa Catarina, Florianópolis, 1999. Disponível em: https://repositorio.ufsc.br/handle/123456789/80610>. Acesso em: 09 out. 2017.
- OLIVEIRA, L. F. C de. et al. Intensidade-duração-frequência de chuvas intensas para localidades no estado de Goiás e Distrito Federal. **Revista Agropecuária Tropical**. Goiás, n. 35, p. 13-18, 2005. Disponível em: https://www.revistas.ufg.br/pat/article/download/2277/2242. Acesso em: 04 out. 2017.
- OLIVEIRA, V. de. P. S. de. **Modelo para a geração de séries sintéticas de precipitação.** 2003. 156f. Tese (Doutorado em Ciências) Universidade Federal de Viçosa, Viçosa, 2003. Disponível em: http://www.locus.ufv.br/bitstream/handle/123456789/9353/texto%20completo.pdf?sequence=1&isAllowed=y. Acesso em: 31 mai. 2017.
- PAZ, A. R. da. **Hidrologia Aplicada.** Disponível em: < http://www.ct.ufpb.br/~adrianorpaz/artigos/apostila_HIDROLOGIA_APLICADA_UERGS.pdf>. Acesso em: 11 out. 2017.

- PEREIRA, C. E.; SILVEIRA, A.; SILVINO, A. N. de. O. **Estudo de chuvas intensas e estimativa da equação idf para a cidade de Barra do Bugres MT**. Disponível em: https://www.researchgate.net/profile/Carlos_Pereira28/publication/242207159_ESTUDO_DE_CHUVAS_INTENSAS_E_ESTIMATIVA_DA_EQUACAO_IDF_PARA_A_CIDADE_DE_BARRA_DO_BUGRES_-_MT/links/552409040cf2caf11bfcbdb4.pdf >. Acesso em: 01 jun. 2017.
- PORTO, M. F. A.; PORTO, R. L. L. Gestão de bacias hidrográficas. **Estud. av**. São Paulo, v. 22, n. 63, p. 43-60, 2008. Disponível em: http://www.scielo.br/scielo.php? pid=S0103-40142008000200004&script=sci_arttext>. Acesso em: 26 mai. 2017.
- RODRIGUES, V. A. Redistribuição da precipitação em seringueira. **Irriga**. Botucatu, v. 13, n. 4, p. 566-575, out/dez. 2008. Disponível em: ">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf?sequence=1&isAllowed=y>">https://repositorio.unesp.br/bitstream/handle/11449/70650/2-s2.0-65849190633.pdf
- RONDON, M. A. C. Espacialização de intensidade pluviométricas de chuvas intensas em Mato Grosso do Sul. 2001. 108f. Dissertação (Mestrado em Saneamento e Recursos Hídricos) Universidade Federal do Mato Grosso do Sul, Campo Grande, 2001. Disponível em: http://repositorio.cbc.ufms.br:8080/jspui/bitstream/123456789/1507/1/Manoel%20Afonso%20Costa%20Rondon.pdf. Acesso em: 04 jun. 2017.
- SAMPAIO, M. V. Determinação e espacialização das equações de chuvas intensas em bacias hidrográficas do Rio Grande do Sul. 2011. 146f. Tese (Doutorado em Engenharia Agrícola) Universidade Federal de Santa Maria, Santa Maria, 2011. Disponível em: http://cascavel.cpd.ufsm.br/tede/tde_arquivos/11/TDE-2012-02-22T141811Z-3446/Publico/SAMPAIO,%20MARCELA%20VILAR.pdf. Acesso em: 31 mai. 2017.
- SANTOS, D. P. dos. **Mitigação do Impacto das Alterações Climáticas na Drenagem Urbana.** 2014. 74f. Dissertação (Mestrado em Engenharia Civil na Especialidade de Hidráulica, Recursos Hídricos e Ambiente) Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Coimbra, 2014. Disponível em: https://estudogeral.sib.uc.pt/bitstream/10316/38558/1/Mitigacao%20do%20impacto%20das%20alteracoes%20climaticas%20na%20drenagem%20urbana.pdf . Acesso em: 21 mar. 2017.
- SANTOS, F. A. A. dos. Et al. Avaliação do uso de dados de precipitação gerados pelo CPC/NCEP na modelagem hidrológica em uma região hidrográfica do rio Araguaia. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO SBSR, XVII, 2015, João Pessoa. **Anais...**Disponível em: http://www.dsr.inpe.br/sbsr2015/files/p0302.pdf Acesso em: 12 out.2017.
- SANTOS, G. et al. Intensidade-duração-frequência de chuvas para o Estado de Mato Grosso do Sul. **Revista Brasileira de Engenharia Agrícola e Ambiental**. Campina Grande, v. 13, supl. 0, p. 899-905, nov/dec. 2009. Disponível em: < http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662009000700012>. Acesso em: 08 jun. 2017.

- SANTOS, W. de. O. et al. Chuvas intensas para a microrregião de Pau dos Ferros RN. **Revista Brasileira de Geografia Física**. Pernambuco, v. 07, n. 06, p. 83-92, 2014. Disponível em: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/viewFile/793/665>. Acesso em: 11 mai. 2017.
- SILVA, B. M. et al. Chuvas Intensas em Localidades do Estado de Pernambuco. **Revista Brasileira de Recursos Hídricos**. Pernambuco, v. 17, n. 3, p. 135-147, jul/set. 2012. Disponível em: http://repositorio.ufpe.br/handle/123456789/5222. Acesso em: 02 out. 2017.
- SILVA, R. C. Análises morfométricas e hidrológicas das bacias hidrográficas do córrego Teixeiras, Ribeirão das Rosas e Ribeirão Yung, afluentes do rio Paraibuna, município de Juiz de Fora/MG. 2011. 97f. Trabalho de Conclusão de Curso (Especialização em Análise Ambiental) Universidade Federal de Juiz de Fora. Juiz de Fora, 2011. Disponível em: http://www.ufjf.br/analiseambiental/files/2009/11/TCC-AMBIENTAL_RAFAEL-C-SILVA_SET-2011.pdf. Acesso em: 29 mai. 2017.
- SILVA, S. R.; ARAÚJO, G. R. de S. Algoritmo para determinação da equação de chuvas intensas. **Revista Brasileira de Geografia Física**. Recife, v. 6, n. 5, p. 1371-1383, 2013. Disponível em: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/viewArticle/760>. Acesso em: 11 mar. 2017.
- SILVEIRA, A. L. da. Equação para os coeficientes de desagregação de chuva. **Revista Brasileira de Recursos Hídricos**. Porto Alegre, v. 5, n. 4, p. 143-147, 2000. Disponível em: < https://www.researchgate.net/profile/Andre_Luiz_Lopes_Da_Silveira/publication/305306154_EQUACAO_PARA_OS_COEFICIENTES_DE_DESAGREGACAO_DE_CHUVA/links/57c8278c08ae9d640480c235/EQUACAO-PARA-OS-COEFICIENTES-DE-DESAGREGACAO-DE-CHUVA.pdf>. Acesso em: 12 out. 2017.
- SOBRINHO, V. F. Aplicação do método das isozonas na obtenção das equações idf de chuvas intensas dos municípios de Juazeiro do Norte, Barbalha e Crato CE. 2011. 72f. Dissertação (Pós Graduação em Engenharia Civil) Universidade Federal do Ceará, Juazeiro do Norte, 2011. Disponível em:http://repositorio.ufc.br/ri/bitstream/riufc/3752/1/2011_dis_vfechinesobrinho.pdf>. Acesso em: 07 out. 2017.
- SOUZA, R. O. R. de M. et al. Equações de chuvas intensas para o Estado do Pará. **Revista Brasileira de Engenharia Agrícola e Ambiental**. Campina Grande, v. 16, n. 9, p. 999-1005, 2012. Disponível em: http://www.scielo.br/pdf/rbeaa/v16n9/v16n9a11.pdf>. Acesso em: 12 mar. 2017.
- TEODORO, P. E. Influência de diferentes coeficientes de desagregação na determinação de equações idf para Aquidauana/MS> **Revista Eletrônica de Engenharia Civil**. Goiás, v. 9, n. 2, p. 1-9, 2014. Disponível em:< https://www.revistas.ufg.br/reec/article/viewFile/28701/17155>. Acesso em: 11 out. 2017.
- TONI, P. A. W. **Dimensionamento de frenagem pluvial:** impacto no arranjo dos micro-reservatórios no controle do escoamento. 2013. 79f. Trabalho de Conclusão

- de Curso (Graduação em Engenharia Civil) Universidade Federal do Rio Grande do Sul. Porto Alegre, 2013. Disponível em: http://www.lume.ufrgs.br/bitstream/handle/10183/78289/000896982.pdf?sequence=1. Acesso em: 25 mar. 2017.
- TUCCI, C. E. M. Coeficiente de escoamento e vazão máxima de bacias urbanas. **Revista Brasileira de Recursos Hídricos**. Porto Alegre, v. 5, n. 1, p. 61-68, jan/mar. 2000. Disponível em: http://rhama.com.br/blog/wp-content/uploads/2017/01/coeficiente-de-escoamento-e-vazao-maxima-de-bacias-urbanas.pdf>. Acesso em: 26 mar. 2017.
- TUCCI, C. E. M.; CLARKE, R. T. Impacto das mudanças da cobertura vegetal no escoamento: revisão. **Revista Brasileira de Recursos Hídricos**. Porto Alegre, v. 2, n. 1, p. 135-152, jan/jun. 1997. Disponível em: https://www.researchgate.net/profile/Robin_Clarke4/publication/242593756_Impacto_das_mudancas_da_cobertura_vegetal-no-escoamento-Revisao.pdf>. Acesso em: 17 mar. 2017.
- VARELA, J. J. S. Chuvas intensas no arquipélago de Cabo Verde. 2007. 93f. Trabalho de Conclusão de Curso (Graduação em Engenharia Sanitária e Ambiental) Universidade Federal de Santa Catarina. Florianópolis, 2007. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/124401/112.pdf?sequence=1 >. Acesso em: 25 mar. 2017.
- VASCONCELOS, T. C. C. de. Análise dos índices de erosividade a partir de dados de precipitação de postos pluviométricos do município de João Pessoa (PB). 2013. 50f. Monografia (Bacharelado em Geografia) Universidade Federal da Paraíba. João Pessoa, 2013. Disponível em: . Acesso em: 11 mai. 2017.
- ZUFFO, A. C. Equações de chuvas são eternas?. In: CONGRESSO LATINO AMERICANO DE HIDRÁULICA, XXI, 2004, São Pedro. **Anais...**Disponível em: http://www.fec.unicamp.br/~zuffo/b407.pdf. Acesso em: 12 mar.2017.
- ZULLO JUNIOR, J.; PINTO, H. S.; PINTO, D. S. **Organização e consistência de banco de dados pluviométricos diários**. Disponível em: http://143.106.29.2/ producao/resumos-em-anais-de-eventos/2005/m-c202_expandido.pdf/download.pdf >. Acesso em: 23 mai. 2017.